LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yasunori Tohjima; Yukio Terao; Hitoshi Mukai; Toshinobu MacHida; Yukihiro Nojiri; Shamil Maksyutov (2015)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, APO, shipboard observation, atmospheric transport, air-sea gas exchange; atmospheric O2/N2 ratio; atmospheric potential oxygen (APO); El Nino-Southern Oscillation (ENSO); atmospheric transport; shipboard observation, air–sea gas exchange, ENSO, atmospheric O2/N2 ratio
We examined temporal variations in the latitudinal distribution of annual mean atmospheric potential oxygen (APO=O2+1.1×CO2), a useful tracer for studying ocean biogeochemical processes. To compute APO, we used atmospheric CO2 and O2 concentrations from flask samples and in-situ measurements onboard commercial cargo ships sailing between Japan and Australia/New Zealand. Most of the observed latitudinal distributions of the annual mean APO for the years 2002–2012 showed equatorial bulges, indicating tropical APO outgassing fluxes. However, the equatorial bulge was noticeably absent during the 2009/2010 El Niño period, especially in the Southern Hemisphere. The temporal variation in the 25–0°S latitudinal APO gradient correlated significantly with the El Niño/Southern Oscillation (ENSO); the equatorward APO gradients decreased (increased) during the El Niño (La Niña) period with a variability of about ±0.1 per meg/degree. Simulated APO based on an atmospheric transport model driven by climatological/constant flux fields and reanalysis meteorological data reproduced the overall characteristic of the observed temporal variation in the APO gradients well, suggesting that the atmospheric transport contributed substantially to the observed interannual variation in the global APO distributions. However, the model simulation underestimated the variability in the APO gradients by about 25%, compared to the observations. These discrepancies suggest a possibility of the existence of additional APO flux variability in the tropical Pacific, enhancing the ENSO-related variability in the observed APO gradients.Keywords: air–sea gas exchange, atmospheric O2/N2 ratio, APO, ENSO, atmospheric transport, shipboard observation(Published: 14 May 2015)Citation: Tellus B 2015, 67, 25869, http://dx.doi.org/10.3402/tellusb.v67.25869
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Balkanski, Y., Monfray, P., Battle, M. and Heimann, M. 1999. Ocean primary production derived from satellite data: an evaluation with atmospheric oxygen measurements. Glob. Biogeochem. Cycles. 13, 257 271.
    • Battle, M., Bender, M. L., Tans, P. P., White, J. W. C., Ellis, J. T. and co-authors. 2000. Global carbon sinks and their variability inferred from atmospheric O2 and d13C. Science. 287, 2467 2470.
    • Battle, M., Fletcher, S. M., Bender, M. L., Keeling, R. F., Manning, A. C. and co-authors. 2006. Atmospheric potential oxygen: new observations and their implications for some atmospheric and oceanic models. Glob. Biogeochem. Cycles. 20, GB1010. DOI: 10.1029/2005GB002534.
    • Behrenfeld, M. J., O'Malley, R. T., Siegel, D. A., McClain, C. R., Sarmiento, J. L. and co-authors. 2006. Climate-driven trends in contemporary ocean productivity. Nature. 444, 752 755. DOI: 10.1038/nature05317.
    • Bender, M., Ellis, T., Tans, P., Francey, R. and Lowe, D. 1996. Variability in the O2/N2 ratio of southern hemisphere air, 1991 1994: implications for the carbon cycle. Glob. Biogeochem. Cycles. 10, 9 21.
    • Bender, M. L., Ho, D. T., Hendricks, M. B., Mika, R., Battle, M. O. and co-authors. 2005. Atmospheric O2/N2 changes, 1993 2002: implications for the partitioning of fossil fuel CO2 sequestration. Glob. Biogeochem. Cycles. 19, GB4017. DOI: 10.1029/2004GB002410.
    • Blaine, T. W. 2005. Continuous Measurements of Atmospheric Ar/N2 as a Tracer of Air-Sea Heat Flux: Models, Methods, and Data. PhD Thesis, University of California, San Diego, La Jolla, 225 pp.
    • Boden, T. A., Marland, G. and Andres, R. J. 2011. Global, Regional, and National Fossil-Fuel CO2 Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TN. DOI: 10.3334/CDIAC/ 00001_V2011.
    • Chen, G. and Lin, H. 2005. Impact of El Nino/La Nina on the seasonality of oceanic water vapor: a proposed scheme for determining the ITCZ. Mon. Weather Rev. 133, 2940 2946.
    • Esbensen, S. K. and Kushnir, J 1981. The Heat Budget of the Global Ocean: An Atlas Based on Estimates from Marine Surface Observations. Report No. 29, Climate Research Institute, Oregon State University, Corvallis, OR.
    • Feely, R. A., Takahashi, T., Wanninkhof, R., McPhaden, M. J., Cosca, C. E. and co-authors. 2006. Decadal variability of the air sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. 111, C08S90. DOI: 10.1029/2005JC003129.
    • Garcia, H. E. and Keeling, R. F. 2001. On the global oxygen anomaly and air sea flux. J. Geophys. Res. 106, 31155 31166.
    • Gloor, M., Gruber, N., Hughes, T. M. and Sarmiento, J. L. 2001. An inverse modeling method for estimation of net air sea fluxes from bulk data: methodology and application to the heat cycle. Glob. Biogeochem. Cycles. 15, 767 782.
    • Gruber, N., Gloor, M., Fan, S.-M. and Sarmiento, J. L. 2001. Air sea flux of oxygen estimated from bulk data: implications for the marine and atmospheric oxygen. Glob. Biogeochem. Cycles. 15, 783 803.
    • Hamme, R. C. and Keeling, R. F. 2008. Ocean ventilation as a driver of interannual variability in atmospheric potential oxygen. Tellus B. 60, 706 717. DOI: 10.1111/j.1600-0889.2008.00376.x.
    • Hirsch, R. M. and Gilroy, E. J. 1984. Methods of fitting a straight line to data: examples in water resources. Water Resour. Bull. 20, 705 711.
    • Keeling, R. F., Najjar, R. P., Bender, M. L. and Tans, P. P. 1993. What atmospheric oxygen measurements can tell us about the global carbon cycle. Glob. Biogeochem. Cycles. 7, 37 67.
    • Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature. 358, 723 727.
    • Keeling, R. F., Stephens, B. B., Najjar, R. G., Doney, S. C., Archer, D. and co-authors. 1998b. Seasonal variation in the atmospheric O2/N2 ratio in relation to the kinetics of air sea gas exchange. Glob. Biogeochem. Cycles. 12, 141 163.
    • Keeling, R. R., Manning, A. C., McEvoy, E. M. and Shertz, S. R. 1998a. Method for measuring changes in atmospheric O2 concentration and their application in southern hemisphere air. J. Geophys. Res. 103, 3381 3397.
    • Laws, E. A., Falkowski, P. G., Smith, W. O., Jr., Ducklow, H. and McCarthy, J. J. 2000. Temperature effects on export production in the open ocean. Glob. Biogeochem. Cycles. 14, 1231 1246.
    • Machida, T., Tohjima, Y., Katsumata, K. and Mukai, H. 2011. A new CO2 calibration scale based on gravimetric one-step dilution cylinders in National Institute for Environmental Studies-NIES 09 CO2 scale. In: Report of the 15th WMO Meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques (ed. W. A. Brand), Jena, Germany, September 7 10, 2009, WMO/GAW Report No. 194, WMO, Geneva, Switzerland, pp. 114 118.
    • Maksyutov, S. and Inoue, G. 2000. Vertical profiles of radon and CO2 simulated by the global atmospheric transport mode. In: CGER Supercomputer Activity Report, 1039 2000, 7, (ed. H. Shimizu). CGER NIES, Tsukuba, Japan, pp. 39 41.
    • Manning, A. C. and Keeling, R. F. 2006. Global oceanic and biotic carbon sinks from the Scripps atmospheric oxygen flask sampling network. Tellus B. 58, 95 116.
    • Naegler, T., Ciais, P., Orr, J. C., Aumont, O. and Ro¨ denbeck, C. 2007. On evaluating ocean models with atmospheric potential oxygen. Tellus B. 59, 138 156.
    • Nevison, C. C., Mahowald, N. M., Doney, S. C., Lima, I. D. and Cassar, N. 2008. Impact of variable air sea O2 and CO2 fluxes on atmospheric potential oxygen (APO) and land ocean carbon sink partitioning. Biogeosciences. 5, 875 889. Online at: www. biogeosciences.net/5/875/2008/
    • Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi, S. and co-authors. 2007. The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 85, 369 432. DOI: 10.2151/jmsj.85.369.
    • R o¨denbeck, C., Le Que´ r e´, C., Heimann, M. and Keeling, R. F. 2008. Interannual variability inoceanic biogeochemical processes inferred by inversion of atmospheric O2/N2 and CO2 data. Tellus B. 60, 685 705. DOI: 10.1111/j.1600-0889.2008.00375.x.
    • Severinghaus, J. P. 1995. Studies of the Terrestrial O2 and Carbon Cycles in Sand Dune Gases and in Biosphere 2. PhD Thesis, Columbia University, New York, 148 pp.
    • Stephens, B. B., Keeling, R. F., Heimann, M., Six, K. D., Murnane, R. and co-authors. 1998. Testing global ocean carbon cycle models using measurements of atmospheric O2 and CO2 concentration. Glob. Biogeochem. Cycles. 12, 213 230.
    • Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N. and co-authors. 2002. Global sea air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. II. 49, 1601 1622.
    • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A. and co-authors. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea air CO2 flux over the global oceans. Deep Sea Res. II. 56, 554 577. DOI: 10.1016/j.dsr2.2008.12.009.
    • Thoning, K.W., Tans, P. P. and Komhyr, W. D. 1989. Atmospheric carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974 1985. J. Geophys. Res. 94, 8549 8565.
    • Tohjima, Y. 2000. Method for measuring changes in the atmospheric O2/N2 ratio by a gas chromatograph equipped with a thermal conductivity detector. J. Geophys. Res. 105, 14575 14584.
    • Tohjima, Y., Machida, T., Watai, T., Akama, I., Amari, T. and co-authors. 2005a. Preparation of gravimetric standards for measurements of atmospheric oxygen and re-evaluation of atmospheric oxygen concentration. J. Geophys. Res. 110, D11302. DOI: 10.1029/2004JD005595.
    • Tohjima, Y., Minejima, C., Mukai, H., Machida, T., Yamagishi, H. and co-authors. 2012. Analysis of seasonality and annual mean distribution of atmospheric potential oxygen (APO) in the Pacific region. Glob. Biogeochem. Cycles. 26, GB4008. DOI: 10.1029/ 2011GB004110.
    • Tohjima, Y., Mukai, H., Machida, T., Nojiri, Y. and Gloor, M. 2005b. First measurements of the latitudinal atmospheric O2 and CO2 distributions across the western Pacific. Geophys. Res. Lett. 32, L17805. DOI: 10.1029/2005GL023311.
    • Tohjima, Y., Mukai, H., Nojiri, Y., Yamagishi, H. and Machida, T. 2008. Atmospheric O2/N2 measurements at two Japanese sites: estimation of global oceanic and land biotic carbon sinks and analysis of the variations in atmospheric potential oxygen (APO). Tellus B. 60, 213 225.
    • Trenberth, K. E. 1997. The definition of El Nino. Bull. Am. Meteorol. Soc. 78, 2771 2777.
    • Yamagishi, H., Tohjima, Y., Mukai, H., Nojiri, Y., Miyazaki, C. and co-authors. 2012. Observation of atmospheric oxygen/ nitrogen ratio aboard a cargo ship using gas chromatography/ thermal conductivity detector. J. Geophys. Res. 117, D04309. DOI: 10.1029/2011JD016939.
  • No similar publications.

Share - Bookmark

Cite this article