LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Schlosser, Elisabeth; Powers, Jordan G.; Duda, Michael G.; Manning, Kevin W.; Reijmer, Carleen H.; van den Broeke, Michiel R. (2010)
Publisher: Co-Action Publishing
Journal: Polar Research
Languages: English
Types: Article
Subjects:
An extreme precipitation event that influenced almost the whole polar plateau of Dronning Maud Land, Antarctica, is investigated using Antarctic Mesoscale Prediction System archive data. For the first time a high-resolution atmospheric model especially adapted for polar regions was used for such a study in Dronning Maud Land. The outstanding event of 21–25 February 2003 was connected to a strong north-westerly flow, caused by a blocking high above eastern Dronning Maud Land, that persisted for several days and brought unusually large levels of moisture to the Antarctic Plateau. This weather situation is most effective in bringing precipitation to high-altitude interior Antarctic ice-core drilling sites, where precipitation in the form of diamond dust usually dominates. However, a few such precipitation events per year can account for a large percentage of the annual accumulation, which can cause a strong bias in ice-core data. Additionally, increased temperatures and wind speeds during these events need to be taken into account for the correct climatic interpretation of ice cores. A better understanding of the frequency of occurrence of intermittent precipitation in the interior of Antarctica in past and future climates is necessary for both palaeoclimatological studies and estimates of future sea-level change.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Birnbaum G., Brauner R. & Ries H. 2006. Synoptic situations causing high-precipitation rates on the Antarctic Plateau: observations from Kohnen Station, DML. Antarctic Science 18, 279-288.
    • Braaten D.A. 2000. Direct measurements of episodic snow accumulation on the Antarctic polar plateau. Journal of Geophysical Research-Atmospheres 105, 10 119-10 128.
    • Bromwich D.H. 1988. Snowfall in high southern latitudes. Review of Geophysics 26, 149-168.
    • Bromwich D.H., Guo Z., Bai L. & Chne Q.-S. 2004. Modeled Antarctic precipitation. Part I: spatial and temporal variability. Journal of Climate 17, 427-447.
    • Bromwich D.H., Monaghan A.J., Manning K.W. & Powers J.G. 2005. Real-time forecasting for the Antarctic: an evaluation of the Antarctic Mesoscale Prediction System (AMPS). Monthly Weather Review 133, 597-603.
    • Bromwich D.H., Monaghan A.J., Powers J.G., Cassano J.J., Wei H., Kuo Y.-H. & Pellegrini A. 2003. Antarctic Mesoscale Prediction System (AMPS): a case study for the 2000-01 field season. Monthly Weather Review 131, 412-434.
    • Bromwich D.H., Robasky F.M. & Cullather R.I. 1995. The atmospheric hydrologic cycle over the Southern Ocean and Antarctica from operational numerical analysis. Monthly Weather Review 123, 3518-3538.
    • Connolley W.M. & King J. 1993. Atmospheric water-vapour transport to Antarctica inferred from radiosonde data. Quarterly Journal of the Royal Meteorological Society 119, 325-342.
    • Cullather R.I., Bromwich D.H. & van Woert M.L. 1998. Spatial and temporal variability of Antarctic precipitation from atmospheric methods. Journal of Climate 11, 334-367.
    • Divine D.V., Isaksson E., Kaczmarska M., Godtliebsen F., Oerter H., Schlosser E., Johnson S.J., van den Broeke M. & van de Wal R.S.W 2009. Tropical Pacific-high latitude South Atlantic teleconnections as seen in the d18O variability in Antarctic coastal ice cores. Journal of Geophysical Research-Atmospheres 114, D11112, doi: 10.1029/2008JD010475.
    • Enomoto H., Motoyama H., Shiraiwa T., Saito T., Kameda T., Furukawa T., Takahashi S., Kodama Y. & Watanabe O. 1998. Winter warming over Dome Fuji, East Antarctica and semiannual oscillation in the atmospheric circulation. Journal of Geophysical Research-Atmospheres 103, 23 103-23 111.
    • EPICA community members 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623-628
    • EPICA community members 2006. One-to-one coupling of glacial climate variability in Greenland and Antarctica. Nature 444, 195-198.
    • Fujita K. & Abe O. 2006. Stable isotopes in daily precipitation at Dome Fuji, East Antarctica. Geophysical Research Letters 33, L18503, doi: 10.1029/2006GL026936.
    • Giovinetto M. & Bentley C.R. 1985. Surface balance in ice drainage systems of Antarctica. Antarctic Journal of the United States 20, 6-13.
    • Grell G.L., Dudhia J. & Stauffer D.R. 1994. A description of the 5th-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Technical Note 398. Boulder: National Center for Atmospheric Research.
    • Hirasawa N., Nakamura H. & Yamanouchi T. 2000. Abrupt changes in meteorological conditions observed at an inland Antarctic station in association with a wintertime blocking. Geophysical Research Letters 27, 1911-1914.
    • Horiuchi K., Uchida T., Sakamoto Y., Ohta A., Matsuzaki H., Shibata Y. & Motoyama H. 2008. Ice core record of 10Be over the past millenium from Dome Fuji, Antarctica: a new proxy record of past solar activity and a powerful tool for stratigraphic dating. Quaternary Geochronology 3, 253-267.
    • Janjic Z.I. 1994. The step-mountain Eta coordinate model: further development of the convection, viscous sublayer, and turbulent closure schemes. Monthly Weather Review 122, 927-945.
    • Jouzel J., Alley R.B., Cuffey K.M., Dansgaard W., Grootes P., Hoffmann G., Johnsen S.F., Koster R.D., Peel D., Shuman A., Stievenard M., Stuiver M. & White J. 1997. Validity of temperature reconstruction from water isotopes in ice cores. Journal of Geophysical Research-Oceans 102, 26 471-26 487.
    • Jouzel J., Vimeux F., Caillon N., Delaygue G., Hoffmann G., Masson-Delmotte V. & Parrenin F. 2003. Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores. Journal of Geophysical ResearchAtmospheres 108, 4361, doi: 10:1029/2002JD002677.
    • King J.C. & Turner J. 1997. Antarctic meteorology and climatology. Cambridge: Cambridge University Press.
    • Lazzara M.A., Keller L.M., Stearns C.R., Thom J.E. & Wiednerm G.A. 2003. Antarctic satellite meteorology: applications for weather forecasting. Monthly Weather Review 131, 371-383.
    • Marshall G.J. 2003. Trends in the Southern Annular Mode from observations and reanalyses. Journal of Climate 16, 4134-4143.
    • Massom R.A., Pook M.J., Comiso J.C., Adams N., Turner J., Lachlan-Cope T. & Gibson T.T. 2004. Precipitation over the interior East Antarctic ice sheet related to midlatitude blocking-high activity. Journal of Climate 17, 1914-1928.
    • Masson-Delmotte V., Jouzel J., Landais A., Stievenard M., Johnsen S.J., White J.W.C., Werner M., Sveinbjornsdottir A. & Fuhrer K. 2005. GRIP deuterium excess reveals rapid and orbital-scale changes in Greenland moisture origin. Science 309, 118-121.
    • Monaghan A.J., Bromwich D.H., Fogt R.L., Wang S., Mayewskyi P., Dixon D.A., Ekaykin A., Frezotti M., Goodwin I., Isaksson E., Kaspari S.D., Morgan V., Oerter H., van Ommen T.D., van der Veen C.J. & Wen J. 2006. Insignificant change in Antarctic snowfall since the International Geophysical Year. Science 313, 827-831.
    • Monaghan A.J., Bromwich D.H., Powers J.G. & Manning K.W. 2005. The climate of the McMurdo, Antarctica, region, as represented by one year of forecasts from the Antarctic Mesoscale Prediction System. Journal of Climate 18, 1174-1189.
    • Noone D. & Simmonds I. 1998. Implications for the interpretation of ice-core isotope data from analysis of modelled Antarctic precipitation. Annals of Glaciology 27, 398-402.
    • Noone D., Turner J. & Mulvaney R. 1999. Atmospheric signals and characteristics of accumulation in Dronning Maud Land, Antarctica. Journal of Geophysical Research-Atmospheres 104, 19 191-19 211.
    • Oerter H., Graf W., Meyer H. & Wilhelms F. 2004. The EPICA ice core from Dronning Maud Land: first results from stable-isotope measurements. Annals of Glaciology 39, 265-270.
    • Powers J.G. 2007. Numerical prediction of an Antarctic severe wind event with the Weather Research and Forecasting (WRF) model. Monthly Weather Review 135, 3134-3157.
    • Powers J.G., Monaghan A.M., Cayette A.M., Bromwich D.H., Kuo Y. & Manning K.W. 2003. Real-time mesoscale modeling over Antarctica: the Antarctic Mesoscale Prediction System. Bulletin of the American Meteorological Society 84, 1522-1545.
    • Reijmer C.H. & van den Broeke M.R. 2001. Moisture source of precipitation in Western Dronning Maud Land, Antarctica. Antarctic Science 13, 210-220
    • Reijmer C.H. & van den Broeke M.R. 2003. Temporal and spatial variability of the surface mass balance in Dronning Maud Land, Antarctica, as derived from automatic weather stations. Journal of Glaciology 49, 512-520.
    • Reisner J.R., Rasmussen R.M. & Bruintjes R.T. 1998. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model. Quarterly Journal of the Royal Meteorological Society 124, 1957-1968.
    • Rignot E., Bamber J.L., van den Broeke M.R., Davis C., Li Y., van de Berg W.J. & van Meijgaard E. 2008. Recent Antarctic mass loss from radar interferometry and regional climate modeling. Nature Geoscience 2, 106-110.
    • Schlosser E. 1999. Effects of seasonal variability of accumulation on yearly mean delta 18O values in Antarctic snow. Journal of Glaciology 45, 463-468.
    • Schlosser E., Duda M.G., Powers J.G. & Manning K.W. 2008. The precipitation regime of Dronning Maud Land, Antarctica, derived from AMPS (Antarctic Mesoscale Prediction System) archive data. Journal of Geophysical Research-Atmospheres 113, D24108, doi: 10.1029/ 2008J0009968.
    • Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.-Y., Wang W. & Powers J.G. 2008. A description of the Advanced Research WRF version 3. NCAR Technical Note 475. Boulder: National Center for Atmospheric Research.
    • Simmonds I. & Wu Y. 1993. Cyclone behaviour response to changes in winter Southern Hemisphere sea-ice concentration. Quarterly Journal of the Royal Meteorological Society 119, 1121-1148.
    • Sinclair M.R. 1981. Record high temperatures in Antarctica-a synoptic case study. Monthly Weather Review 109, 2234-2242.
    • Turner J. 2004. The El Niño-Southern Oscillation and Antarctica. International Journal of Climatology 24, 1-31.
    • van As D., van den Broeke M.R. & Helsen M. 2007. Strong-wind events and their impact on the near-surface climate at Kohnen Station on the Antarctic Plateau. Antarctic Science 19, 507-519.
    • van de Berg W.J., van den Broeke M.R. & van Meijgaard E. 2006. Reassessment of the Antarctic surface mass balance using calibrated output of a regional atmospheric climate model. Journal of Geophysical Research-Atmospheres 111, D11104, doi: 10.1029/2005JD006495.
    • Vaughan D.G., Bamber J.L., Giovinetto M., Russel J., Paul A. & Cooper R. 1999. Reassessment of net surface mass balance in Antarctica. Journal of Climate 12, 933-946.
    • Watanabe O., Jouzel J., Johnsen S., Parrenin F., Shoji H. & Yoshida N. 2003. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422, 509-512.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from