Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Qian, Yun; Giorgi, Filippo; Huang, Yan; Chameides, William; Luo, Chao (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We discuss a series of simulations of anthropogenic sulfur over East Asia with a SO2/SO42− chemistry-transport model driven in on-line mode by a regional climate model. Sensitivity to OH and H2O2 concentration, cloud parameters, SO2 dry deposition and emission strength is analyzed and the different components of the sulfur budget are examined. The SO2 and SO2−4 column burdens show pronounced variability at temporal scales from seasonal to synoptic and sub-daily, with SO2 and SO2−4 behaving differently due to the interplay of chemical conversion, removal and transport processes. Both SO2 and SO2−4 show marked spatial variability, with emission being the dominant term in regulating the SO2 spatial distribution. The atmospheric SO2 and SO2−4 amounts show close to a linear response to surface emission. Aqueous phase SO2→SO2−4 conversion and wet removal are the primary factors that regulate the SO2−4 amounts, with dry deposition and gas phase SO2→SO2−4 conversion being of secondary importance. Aqueous phase conversion and dry deposition are the dominant loss mechanisms for SO2 . The model shows low sensitivity to variations in OH, H2O2, and cloud parameters, while the sensitivity to prescribed dry deposition velocity is more pronounced. Overall, our results are in line with previous modeling studies and with very limited available observations.DOI: 10.1034/j.1600-0889.2001.d01-14.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anthes, R. A. 1977. A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev. 105, 270-286.
    • Anthes, R. A., Hsie, E. Y. and Kuo, Y. H. 1987. Description of the Penn State /NCAR mesoscale model version 4 (MM4). NCAR technical note, NCAR/ TN-282+STR.
    • Barrie, L. A., Yi, Y., Leaitch, W. R., Lohmann, U., Kasibhatla, P., Roelofs, G. J., Wilson, J., McGovern, F., Benkovitz, C., Melieres, M. A., Law, K., Prospero, J., Kritz, M., Bergmann, D., Bridgeman, C., Chin, M., Christensen, J., Easter, R., Feichter, J., Land, C., Jeuken, A., Kjellstr o¨m, E., Koch, D. and Rasch, P. 2001. A comparison of large scale atmospheric sulfate aerosol models (COSAM): Overview and highlights. T ellus 53B, in press.
    • Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz C. M. and Schwartz, S. E. 2000. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features and sensitivity to aqueous chemistry. J. Geophys. Res. 105, 1387-1415.
    • Chameides, W. L. 1984. The photochemistry of a remote marine stratiform cloud. J. Geophys. Res. 89, 4739-4755.
    • Chameides, W. L. 1995. The Yangtze Delta of China as an evolving metro-agro-plex. Proposal to the National Aeronautics and Space Administration, Georgia Institute of Technology, Atlanta, Georgia, 80302, USA, 55 pp.
    • Chameides, W. C., Xingsheng, L., Xiaoyan, T., Xiuji, Z., Chao, L., Kiang, C. S., John, J. St., Saylor, R., Liu, S. C., Lam, K. S., Wang, T. and Giorgi, F. 1999. Is ozone pollution aVecting crop yields in China?. Geophys. Res. L etl. 26, 867-870.
    • Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S. and Spiro, P. A. 1996. A global three-dimensional model of tropospheric sulfate. J. Geophys. Res. 101, 18,667-18,690.
    • DeMore, W. B., Sander, S. P., Golden, D. M., Hampson, R. F., Kurylo, M. J., Howard, C. J., Ravishankara, A. R., Kolb, C. E. and Molina, M. J. 1994. Chemical kinetics and photochemical data for use in stratospheric modeling. Jet Propulsion Laboratory Publ. 94-26.
    • Dickinson, R. E., Henderson-Sellers, A. and Kennedy, P. J. 1993. Biosphere-aAtmosphere transfer scheme (BAT S) version 1e as coupled to the NCAR community climate model. Technical note, NCAR/TN-387+STR, National Center for Atmospheric Research, Boulder, Colorado, 72 pp.
    • Feichter, J., Kjellstr o¨m, E., Rodhe, H., Dentner, F., Lelieveld, J. and Roelofs, G. 1996. Simulation of the tropospheric sulfur cycle in a global climate climate. Atmos. Environ. 30, 1693-1707.
    • Giorgi, F. 1995. Perspectives for regional earth system modeling. Global and Planetary Change 10, 23-42.
    • Giorgi, F. 1989. Two-dimensional simulations of possible mesoscale eVects of nuclear war fires. I: Model description. J. Geophys. Res. 94, 1127-1144.
    • Giorgi, F. and Chameides, W. L. 1986. Rainout lifetimes of highly soluble aerosols and gases as inferred from simulations with a general circulation model. J. Geophys. Res. 91, 14,367-14,376.
    • Giorgi, F. and Mearns, L. O. 1991. Approaches to regional climate change simulation: a review. Rev. Geophys. 29, 191-216.
    • Giorgi, F. and Marinucci, M. R. 1996. An investigation of the sensitivity of simulated precipitation to model resolution and its implications for climate studies. Mon. Wea. Rev. 124, 148-166.
    • Giorgi, F. and Mearns, L. O. 1999. Regional climate modeling revisited. An introduction to the special issue. J. Geophys. Res. 104, 6335-6352.
    • Giorgi, F. and Shields, C. 1999. Tests of precipitation parameterizations available in the latest version of the ncar regional climate model (RegCM) over continental US. J. Geophys. Res. 104, 6353-6375.
    • Giorgi, F., Marinucci, M. R. and Bates, G. T. 1993a. Development of a second generation regional climate model (RegCM2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev. 121, 2794-2813.
    • Giorgi, F., Marinucci, M. R., Bates, G. T. and De Canio, G. 1993b. Development of a second generation regional climate model (RegCM2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev. 121, 2814-2832.
    • Giorgi, F., Huang, Y., Nishizawa, K. and Fu, C. 1999. A seasonal cycle simulation over eastern Asia and its sensitivity to radiative transfer and surface processes. J. Geophys. Res. 104, 6403-6423.
    • Grell, G. A., Dudhia, J. and StauVer, D. R. 1994. A description of the fifth generation Penn State/NCAR mesoscale model (MM5). NCAR technical note, NCAR/TN-398+STR, 121 pp.
    • Holtslag, A. A. M., Bruijin, E. I. F. and Pan, H. L. 1990. A high resolution air mass transformation model for short-range weather forecasting. Mon. Wea. Rev. 118, 1561-1575.
    • Huang, M., Wang, Z., He, D., Xu, H. and Zhou, L. 1995. Modeling studies on sulfur deposition and transport in East Asia. Water Air Soil pollution 85, 1927-1932.
    • Ichikawa, Y. and Fujita, S. 1995. An analysis of wet deposition of sulfate using a trajectory model for East Asia, Water Air Soil pollution 85, 1921-1926.
    • IPCC, 1996. Climate change 1995: the science of climate change, eds. Houghton, J. T., Meira Filho, L. G., Callander, B. A., Harris, N., Kattenberg, A. and Maskell, K. Cambridge University Press, Cambridge, UK, 572 pp.
    • Kasibhatla, P., Chameides, W. L. and John, J. St. 1997. A three-dimensional global model investigation of seasonal variation in the atmospheric burden of anthropogenic sulfate aerosols. J. Geophys. Res. 102, 3737-3759.
    • Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Briegleb, B. P., Williamson, D. L. and Rasch, P. J. 1996. Description of the NCAR community climate model (CCM3). NCAR technical note, NCAR/ TN-420+STR, 152 pp.
    • Langner, J. and Rodhe, H. 1991. A global three-dimensional model of the tropospheric sulphur cycle. J. Atmos. Chem. 13, 225-263.
    • Levine, S. Z. and Schwartz, S. E. 1982. In-cloud and below cloud scavenging of nitric acid vapor. Atmos. Environ. 16, 1725-1734.
    • Li, X. W., Zhou, X. J. and Li, W. L. 1995. The cooling of Sichuan province in recent 40 years and its probable mechanism. Acta Meteorologica Sinica 9, 57-68.
    • Lohmann, U., Salzen, K., McFarlane, N., Leighton, H. G. and Feichter, J. 1999. Tropospheric sulfur cycle in the Canadian general circulation model. J. Geophys. Res., 104, 26,833-26,858.
    • Luo C., John, J. St., Zhou, X. J., Lam, K. S., Wang, T. and Chameides, W. L. 2000. A nonurban ozone air pollution episode over eastern China: observations and model simulations. J. Geophys. Res. 105, 1889-1908.
    • Pham, M., Muller, J. F., Brasseur, G. B., Granier, C. and Megie, G. 1995. A three-dimensional study of the tropospheric sulfur cycle. J. Geophys. Res. 100, 26,061-26,092.
    • Qian, Y., Fu, C. B., Hu, R. M. and Wang, Z. F. 1996. EVects of industrial SO2 emission on temperature variation in China and East Asia. Climatic and Environmental Research 2, 143-149.
    • Qian, Y. and Fu, C. B. 1997. SO2 emissions, sulphate aerosols and climate change. Advances in Earth Science 12, 440-447.
    • Qian, Y. and Fu, C. B. 1998. Composition and acidity of precipitation in China. Proceedings of the 4th CAAP (Composition and acidity of Asian precipitation) Workshop, eds. H. Rodhe, J. Kuylenstierna, J. Boonjawat and G. Ayers, Bangkok, 9-12 November 1998, 99-104.
    • Qian, Y. and Giorgi, F. 1999. Interactive coupling of regional climate and sulfate aerosol models over eastern Asia. J. Geophys. Res. 104, 6477-6499.
    • Rasch, P. J., Barth, M. C., Kiehl, J. T., Schwartz, S. E. and Benkovitz, C. M. 2000. A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res. 105, 1367-1385.
    • Rodhe, H. 1999. Human impact on the atmospheric sulfur balance. T ellus 51A-B, 110-122.
    • Roelofs, G. J., Kasibhatla, P., Barrie, L., Bergman, D., Bridgeman, C., Chin, M., Christensen, J., Easter, R., Feichter, J., Jeuken, A., Kjellstr o¨m, E., Koch, D., Land, C., Lohmann, U., Rasch, P., Yi, Y. 2000. Analysis of regional budgets of sulfur species modelled for the COSAM exercise. T ellus, 53B, in press.
    • Streets, D. G. and WaldhoV, S. T. 1999. Present and future emissions of air pollutants in China: SO2, NOx, and CO. Atmos. Environ. 34, 361-372.
    • Wang, Z., Huang, M., He, D., Xu, H. and Zhou, L. 1996. Sulfur distribution and transport studies in East Asia using an Eulerian Model. Advances in Atmospheric Sciences 13, 400-409.
    • Warneck, P. 1988. Chemistry of the natural atmosphere. Academic Press, San Diego, CA, 343 pp.
    • Zhou, X. J., Li, W. L. and Luo, Y. F. 1998. Numerical simulation of the aerosol radiative forcing and regional climate eVect over China. Scientia Atmospherica Sinica 22, 418-427.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from