Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Panzer, Matthew; Aidala, Katherine E.; Bulović, Vladimir (2012)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: QD; monolayer; stamp; deposition; LED; organic semiconductor
Novel thin film optoelectronic devices containing both inorganic colloidal semiconductor quantum dots (QDs) and organic semiconductor thin films have been widely investigated in recent years for a variety of applications. Here, we review one of the most versatile and successful methods developed to integrate these two dissimilar material classes into a functional multilayered device: contact printing of colloidal QD films. Experimental details regarding the contact printing process are outlined, and the key advantages of this QD deposition method over other commonly encountered techniques are discussed. The use of tapping mode atomic force microscopy (AFM) to effectively characterize QD film morphology both on an elastomeric stamp (before contact printing) and as-transferred to the organic semiconductor receiving film (after contact printing) is also described. Finally, we offer suggestions for future efforts directed toward the goal of rapid, continuous QD deposition over larger substrates for the advancement of hybrid optoelectronic thin film devices.Keywords: QD; monolayer; stamp; deposition; LED; organic semiconductor(Published: 9 April 2012)Citation: Nano Reviews 2012, 3: 16144 - DOI: 10.3402/nano.v3i0.16144
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Arango AC, Oertel D, Xu Y, Bawendi M, Bulovic´ V. Heterojunction photovoltaics using printed colloidal quantum dots as a photosensitive layer. Nano Lett 2009; 9: 860 3.
    • 2. Hillhouse H, Beard M. Solar cells from colloidal nanocrystals: Fundamentals, materials, devices, and economics. Curr Opin Colloid In 2009; 14: 245 59.
    • 3. Zhao N, Osedach TP, Chang L-Y, Geyer SM, Wanger D, Binda MT, et al. Colloidal PbS quantum dot solar cells with high fill factor. ACS Nano 2010; 4: 3743 52.
    • 4. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, et al. Ultrasensitive solution-cast quantum dot photodetectors. Nature 2006; 442: 180 3.
    • 5. Osedach TP, Geyer SM, Ho JC, Arango AC, Bawendi MG, Bulovic´ V. Lateral heterojunction photodetector consisting of molecular organic and colloidal quantum dot thin films. Appl Phys Lett 2009; 94: 043307-1 3.
    • 6. Osedach TP, Zhao N, Geyer SM, Chang L-Y, Wanger D, Arango AC, et al. Interfacial recombination for fast operation of a planar organic/QD infrared photodetector. Adv Mater 2010; 22: 5250 4.
    • 7. Tu CC, Lin L. High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots. Appl Phys Lett 2008; 93: 163107-1 3.
    • 8. Anikeeva P, Halpert J, Bawendi M, Bulovic´ V. Electroluminescence from a mixed red-green-blue colloidal quantum dot monolayer. Nano Lett 2007; 7: 2196 200.
    • 9. Anikeeva P, Madigan C, Halpert J, Bawendi M, Bulovic´ V. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys Rev B 2008; 78: 085434-1 8.
    • 10. Anikeeva P, Halpert J, Bawendi M, Bulovic´ V. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett 2009; 9: 2532 6.
    • 11. Bae WK, Kwak J, Lim J, Lee D, Nam MK, Char K, et al. Multicolored light-emitting diodes based on all-quantum-dot multilayer films using layer-by-layer assembly method. Nano Lett 2010; 10: 2368 73.
    • 12. Cho K-S, Lee EK, Joo W-J, Jang E, Kim T-H, Lee SJ, et al. High-performance crosslinked colloidal quantum-dot lightemitting diodes. Nat Photonics 2009; 3: 341 5.
    • 13. Coe-Sullivan S, Woo W, Bawendi M, Bulovic´ V. Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 2002; 420: 800 3.
    • 14. Coe-Sullivan S, Woo W, Steckel J, Bawendi M, Bulovic´ V T. uning the performance of hybrid organic/inorganic quantum dot light-emitting devices. Org Electron 2003; 4: 123 30.
    • 15. Coe-Sullivan S, Steckel J, Woo W, Bawendi M, Bulovic´ V. Largearea ordered quantumdot monolayers via phase separation during spin-casting. Adv Funct Mater 2005; 15: 1117 24.
    • 16. Colvin V, Schlamp M, Alivisatos A. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 1994; 370: 354 7.
    • 17. Haverinen H, Myllyla R, Jabbour G. Inkjet Printed RGB Quantum Dot-Hybrid LED. J Disp Technol 2010; 6: 87 9.
    • 18. Kim L, Anikeeva PO, Coe-Sullivan SA, Steckel JS, Bawendi MG, Bulovic´ V. Contact Printing of Quantum Dot LightEmitting Devices. Nano Lett 2008; 8: 4513 7.
    • 19. Kim T-H, Cho K-S, Lee EK, Lee SJ, Chae J, Kim JW, et al. Full-colour quantum dot displays fabricated by transfer printing. Nat Photonics 2011; 5: 176 82.
    • 20. Kohary K, Burlakov V, Pettifor D, Burlakov V, Pettifor D. Modeling organic light-emitting diodes incorporating nanocrystal quantum dots. J Appl Phys 2006; 100: 114315-1 7.
    • 21. Mattoussi H, Radzilowski LH, Dabbousi BO, Thomas EL, Bawendi MG, Ruber MF. Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. J Appl Phys 1998; 83: 7965 74.
    • 22. Munro AM, Bardecker JA, Liu MS, Cheng Y-J, Niu Y-H, Plante IJ, et al. Colloidal CdSe quantum dot electroluminescence: ligands and lightemitting diodes. Microchim Acta 2008; 160: 345 50.
    • 23. Niu Y-H, Munro AM, Cheng Y-J, Tian Y, Liu MS, Zhao J, et al. Improved performance light-emitting diodes quantum dot layer. Adv Mater 2007; 19: 3371 6.
    • 24. Park JH, Kim JY, Chin BD, Kim YC, Kim JK, Park OO. White emission from polymer/quantum dot ternary nanocomposites by incomplete energy transfer. Nanotechnology 2004; 15: 1217 20.
    • 25. Rizzo A, Mazzeo M, Palumbo M, Lerario G, D'Amone S, Cingolani R, et al. Hybrid light-emitting diodes from microcontact-printing double-transfer of colloidal semiconductor CdSe/ZnS quantum dots onto organic layers. Adv Mater 2008; 20: 1886 91.
    • 26. Rizzo A, Mazzeo M, Biasiucci M, Cingolani R, Gigli G. White electroluminescence from a microcontact-printing-deposited CdSe/ZnS colloidal quantum-dot monolayer. Small 2008; 4: 2143 7.
    • 27. Ryu SY, Hwang BH, Park KW, Hwang HS, Sung JW, Baik HK, et al. Highly efficient organic light-emitting diodes with a quantum dot interfacial layer. Nanotechnology 2009; 20: 065204-1 5.
    • 28. Steckel JS, Snee P, Coe-Sullivan S, Zimmer JP, Halpert JE, Anikeeva P, et al. Color-saturated green-emitting QD-LEDs. Angew Chem Int Edit 2006; 45: 5796 9.
    • 29. Tan Z, Hedrick B, Zhang F, Zhu T, Xu J, Henderson RH, et al. Stable binary complementary white light-emitting diodes based on quantumdot/polymer-bilayer structures. IEEE Photonic Tech L 2008; 20: 1998 2000.
    • 30. Tan Z, Xu J, Zhang C, Zhu T, Zhang F, Hedrick B, et al. Colloidal nanocrystal-based light-emitting diodes fabricated on plastic toward flexible quantum dot optoelectronics. J Appl Phys 2009; 105: 034312-1 5.
    • 31. Zhao J, Bardecker JA, Munro AM, Liu MS, Niu Y, Ding I-K, et al. Efficient CdSe/CdS quantum dot light-emitting diodes using a thermally polymerized hole transport layer. Nano Lett 2006; 6: 463 7.
    • 32. Bader A, Ilkevich A, Kosilkin I, Leger J. Precise color tuning via hybrid light-emitting electrochemical cells. Nano Lett 2001; 11: 461 5.
    • 33. Lee J, Sundar V, Heine J, Bawendi M, Jensen K. Full color emission from II VI semiconductor quantum dot-polymer composites. Adv Mater 2000; 12: 1102 5.
    • 34. Son D-I, Park D-H, Ie S-Y, Cho W-K, Choi J-W, Li F, et al. Single active-layer structured dual-function devices using hybrid polymer-quantum dots. Nanotechnology 2008; 19: 395201-1 7.
    • 35. Thapa R, Choudhury KR, Kim WJ, Sahoo Y, Cartwright AN, Prasad PN. Polymeric nanocomposite infrared phototvoltaics enhanced by pentacene. Appl Phys Lett 2007; 90: 252112-1 3.
    • 36. Talapin D, Lee J, Kovalenko M, Shevchenko E. Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 2010; 110: 389 458.
    • 37. Anikeeva PO. Physical properties and design of light-emitting devices based on organic materials and nanoparticles. PhD thesis, Massachusetts Institute of Technology, 2009.
    • 38. Yan X, Yao J, Lu G, Chen X, Zhang K, Yang B. Microcontact printing of colloidal crystals. J Am Chem Soc 2004; 126: 10510 1.
    • 39. Choi JH, Kim D, Yoo P, Lee H. Simple detachment patterning of organic layers and its application to organic light-emitting diodes. Adv Mater 2005; 17: 166 71.
    • 40. Packard C, Aidala K, Ramanan S, Bulovic´ V. Patterned removal of molecular organic films by diffusion. Langmuir 2001; 27: 9073 6.
    • 41. Ebenstein Y, Nahum E, Banin U. Tapping mode atomic force microscopy for nanoparticle sizing: Tip-sample interaction effects. Nano Lett 2002; 2: 945 50.
    • 42. Panzer MJ, Aidala KE, Anikeeva PO, Halpert JE, Bawendi MG, Bulovic´ V. Nanoscale morphology revealed at the interface between colloidal quantum dots and organic semiconductor films. Nano Lett 2010; 10: 2421 6.
    • 43. Magonov S, Elings V, Whangbo M. Phase imaging and stiffness in tapping-mode atomic force microscopy. Surf Sci 1997; 375: L385 L91.
    • 44. Zorn M, Bae WK, Kwak J, Lee H, Lee C, Zentel R, et al. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices. ACS Nano 2009; 3: 1063 8.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from