Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Errico, Ronald M.; Langland, Rolf (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Papers by Szunyogh and co-workers and Iyengar and co-workers, among others, claim that‘‘bred growing vectors’’ (BGVs) are appropriate for generating initial perturbations for applicationto ensemble weather prediction. The theoretical bases for this claim are purported relationshipsbetween the bred vectors and what are called local Lyapunov vectors (LLVs). Severalstatements in these papers are inaccurate, however, regarding: the properties of LLVs in contrastto those of singular vectors; the relationship between LLVs and BGVs; the relationship betweenBGVs and analysis errors; the relationship between singular vectors and dynamic imbalances;and the adequacy of very low-resolution models to characterize singular vectors of models usedfor numerical weather prediction. These inaccuracies and their implications for the use of BGVsin ensemble weather prediction are discussed here.DOI: 10.1034/j.1600-0870.1999.t01-3-00007.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abarbanel, H. D. I., Brown, R., Sidorowich, J. J. and Tsimring, L. S. 1993. The analysis of observed data in physical systems. Rev. Modern Phys. 65, 1331-1392.
    • Anderson, J. L. 1996. Selection of initial conditions for ensemble forecasts in a simple perfect model framework. J. Atmos. Sci. 53, 22-36.
    • Barkmeijer, J., Houtekamer, P. and Wang, X. 1993. Validation of a skill prediction method. T ellus 45A, 424-434.
    • Bourke, W. and McGregor, J. L. 1983. A nonlinear vertical mode initialization scheme for a limited area prediction model. Mon. Wea. Rev. 111, 2285-2297.
    • Buizza, R., Tribbia, J., Molteni, F. and Palmer, T. N. 1993. Computation of optimal unstable structures for a numerical prediction model. T ellus 45A, 388-407.
    • Buizza, R., Gelaro, R., Molteni, F. and Palmer, T. N. 1997. The impact of increased resolution on predictability studies with singular vectors. Quart. J. Roy. Meteor. Soc. 123, 1007-1033.
    • Buizza, R. and Palmer, T. N. 1995. The singular vector structure of the atmospheric general circulation. J. Atmos. Sci. 52, 1434-1456.
    • Charney, J. G. 1947. The dynamics of long waves in a baroclinic westerly current. J. Meteorol. 4, 135-162.
    • Daley, R. 1981. Predictability experiments with a baroclinic model. Atmos. Ocean 19, 77-89.
    • Daley, R. 1991. Atmospheric data analysis. Cambridge University Press, 420 pp.
    • Eckhardt, B. and Yao, D. 1993. Local Lyapunov exponents in chaotic systems. Physica D65, 100-108.
    • Ehrendorfer, M. 1994. The Liouville equation and its potential usefulness for the prediction of forecast skill. Part I: T heory. Mon. Wea. Rev. 122, 703-713.
    • Ehrendorfer, M. 1997. Predicting the uncertainty of numerical weather forecasts. Meteorol. Zeitschrift 6, 147-183.
    • Ehrendorfer, M. and Errico, R. M. 1995. Mesoscale predictability and the spectrum of optimal perturbations. J. Atmos. Sci. 52, 3475-3500.
    • Ehrendorfer, M. and Tribbia, J. J. 1997. Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci. 54, 286-313.
    • Ehrendorfer, M., Errico, R. M. and Raeder, K. D. 1999. Singular-vector perturbation growth in a primitiveequation model with moist physics. J. Atmos. Sci., in press.
    • Epstein, E. S. 1969. Stochastic dynamic prediction. T ellus 21, 730-759.
    • Errico, R. M. 1981. An analysis of interactions between geostrophic and ageostrophic modes in a simple model. J. Atmos. Sci. 38, 544-553.
    • Errico, R. M. 1984. The statistical equilibrium solution of a primitive-equation model. T ellus 36A, 42-51.
    • Errico, R. M. 1989. T heory and application of nonlinear normal mode initialization. NCAR Technical Note, NCAR/TN-344+IA, 145 pp.
    • Errico, R. M. and Baumhefner, D. P. 1987. Predictability experiments using a high-resolution limited-area model. Mon. Wea. Rev. 115, 488-504.
    • Errico, R. M. and Raeder, K. D. 1999. An examination of the accuracy of the linearization of a mesoscale model with moist physics. Quart. J. Roy. Meteor. Soc. 125, 169-195.
    • Errico, R. M. and Williamson, D. L. 1988. The behavior of gravitational modes in numerical forecasts. Mon. Wea. Rev. 116, 1737-1756.
    • Farrell, B. F. 1988. Optimal excitation of neutral Rossby waves. J. Atmos. Sci. 45, 163-172.
    • Farrell, B. F. and Ioannou, P. J. 1996. Generalized stability theory. Part II: Nonautonomous operators. J. Atmos. Sci. 53, 2041-2053.
    • Fleming, R. J. 1971. On stochastic dynamic prediction. I: The energetics of uncertainty and the question of closure. Mon. Wea. Rev. 99, 851-872.
    • Gelaro, R., Buizza, R., Palmer, T. N. and Klinker, E. 1998. Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors. J. Atmos. Sci. 55, 1012-1037.
    • Gelaro, R. and Errico, R. M. 1993. The forcing and balance of zonally symmetric modes in a global model. Mon. Wea. Rev. 121, 470-481.
    • Houtekamer, P. L. and Derome, J. 1995. Methods for ensemble prediction. Mon. Wea. Rev. 122, 2181-2196.
    • Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H. and Mitchell, H. L. 1996. A system simulation approach to ensemble prediction. Mon. Wea. Rev. 124, 1225-1242.
    • Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev. 126, 796-811.
    • Iyengar, G., Toth, Z., Kalnay, E. and Woolen, J. S. 1996. Are the bred vectors representative of analysis errors? Preprints, 11th Conference on Numerical weather prediction, 19-23 August 1996, Norfolk, VA. American Meteorological Society, J64-J66.
    • Legras, B. and Vautard, R. 1996. A guide to Liapunov vectors. Proceedings 1995 ECMW F Seminar on Predictability, Vol. I, pp. 143-156.
    • Leith, C. E. 1974. Theoretical skill of Monte Carlo forecasts. Mon. Wea. Rev. 102, 409-418.
    • Lorenz, E. N. 1960. Energy and numerical weather prediction. T ellus 12, 364-373.
    • Lorenz, E. N. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130-141.
    • Lorenz, E. N. 1982. Atmospheric predictability experiments with a large numerical model. T ellus 34, 505-513.
    • Lorenz, E. N. 1993. The essence of chaos. University of Washington Press, 227 pp.
    • Molteni, F., Buizza, R., Palmer, T. N. and Petroliagis, T. 1996. The ECMWF ensemble prediction system: Methodology and validation. Quart. J. Roy. Meteor. Soc. 122, 73-119.
    • Palmer, T. N. 1996. Predictability of the atmosphere and oceans: from days to decades. Proceedings 1995 ECMW F Seminar on Predictability, Vol. I, pp. 83-141.
    • Palmer, T. N., Gelaro, R., Barkmeijer, J. and Buizza, R. 1998. Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 55, 633-653.
    • Pires, C., Vautard, R. and Talagrand, O. 1996. On extending the limits of variational assimilation in nonlinear chaotic systems. T ellus 48A, 96-121.
    • Pu, Z.-X., Kalnay, E., Parrish, D., Wu, W. and Toth, Z. 1997. The use of bred vectors in the NCEP global 3-D variational analysis system. Wea. Forecasting 12, 689-695.
    • Reynolds, C. A. and Errico, R. M. 1999. On the convergence of singular vectors toward Lyapunov vectors. Mon. Wea. Rev., in press.
    • Reynolds, C. A. and Palmer, T. N. 1998. The impact of decaying singular vectors on forecast and analysis correction. J. Atmos. Sci. 55, 3005-3023.
    • Simmons, A. J., Mureau, R. and Petroliagis, T. 1995. Error growth and estimates of predictability from the ECMWF forecasting system. Quart. J. Roy. Meteor. Soc. 121, 1739-1771.
    • Szunyogh, I., Kalnay, E. and Toth, Z. 1997. A comparison of Lyapunov and optimal vectors in a low resolution GCM. T ellus 49A, 200-227.
    • Talagrand, O. 1981. A study of the dynamics of fourdimensional data assimilation. T ellus 33, 43-60.
    • Toth, Z. and Kalnay, E. 1993. Ensemble forecasting at NMC: the generation of perturbations. Bull. Amer. Meteor. Soc. 74, 2317-2330.
    • Toth, Z., Kalnay, E., Tracton, S. M., Wobus, R. and Irwin, J. 1997. A synoptic evaluation of the NCEP ensemble. Wea. Forecasting 12, 140-153.
    • Tracton, M. S. and Kalnay, E. 1993. Operational ensemble prediction at the National Meteorological Center: practical aspects. Weather and Forecasting 8, 379-398.
    • Trevisan, A. and Legnani, R. 1995. Transient error growth and local predictability: A study in the Lorenz system. T ellus 47A, 103-117.
    • Tribbia, J. J. and Baumhefner, D. P. 1988. The reliability of improvements in deterministic short-range forecasts in the presence of initial state and modeling deficiencies. Mon. Wea. Rev. 116, 2276-2288.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from