Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ren, Wei; Tian, Hanqin; Xu, Xiaofeng; Liu, Mingliang; Lu, Chaoqun; Chen, Guangsheng; Melillo, Jerry; Reilly, John; Liu, Jiyuan (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The spatial and temporal patterns of CO2 and CH4 fluxes in China's croplands were investigated and attributed to multifactor environmental changes using the agricultural module of the Dynamic Land Ecosystem Model (DLEM), a highly integrated process-based ecosystem model. During 1980–2005 modelled results indicated that China's croplands acted as a carbon sink with an average carbon sequestration rate of 33.4 TgC yr-1 (1 Tg = 1012 g). Both the highest net CO2 uptake rate and the largest CH4 emission rate were found in southeast region of China's croplands. Of primary influences were land-cover and land-use change, atmospheric CO2 and nitrogen deposition, which accounted for 76%, 42% and 17% of the total carbon sequestration in China's croplands during the study period, respectively. The total carbon losses due to elevated ozone and climate variability/change were equivalent to 27% and 9% of the total carbon sequestration, respectively. Our further analysis indicated that nitrogen fertilizer application accounted for 60% of total national carbon uptake in cropland, whereas changes in paddy field areas mainly determined the variability of CH4 emissions. Our results suggest that improving air quality by means such as reducing ozone concentration and optimizing agronomic practices can enhance carbon sequestration capacity of China's croplands.DOI: 10.1111/j.1600-0889.2010.00522.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Akimoto, H. 2003. Global air quality and pollution. Science, 302, 1716-1719.
    • Allen, L. H., Albrecht, S. L., Colon-Guasp, W., Covell, S. A., Baker, J. T. and co-authors. 2003. Methane emissions of rice increased by elevated carbon dioxide and temperature. J. Environ. Qual. 32, 1978-1991.
    • Amaral, J. A., Ren, T. and Knowles, R. 1998. Atmospheric methane consumption by forest soils and extracted bacteria at different pH values. Appl. Environ. Microb. 64, 2397-2402.
    • Amthor, J. S. 2000. The McCree-de Wit-Penning de Vries-Thornley respiration paradigms: 30 years later. Ann. Bot.-Lond. 86, 1-20.
    • Bachelet, D. and Neue, H. U. 1993. Methane emissions from wetland rice areas of Asia. Chemosphere 26, 219-237.
    • Bonan, G. B. 1996. A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user's guide, NCAR/TN-417+STR, NCAR Technical Note, Boulder, Colorado.
    • Bondeau, A., Smith, P. C., Zaehle, S., Schaphoff, S., Lucht, W. and coauthors. 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679-706.
    • Cai, Z., Shan, Y. and Xu, H. 2007. MINI-REVIEW: effects of nitrogen fertilization on CH4 emission from rice fields. Soil Sci. Plant Nutr. 53, 353-361.
    • Cao, M. K., Dent, J. B. and Heal, O. W. 1995. Modeling methane emissions from rice paddies. Global Biogeochem. Cycle 9, 183-195.
    • Chameides, W., Li, X. S., Tang, X. Y., Zhou, X. J., Luo, C. and coauthors. 1999. Is O3 pollution affecting crop yield in China? Geophys. Res. Lett. 26, 867-870.
    • Chapin, F. S. III, Matson, P. A. and Mooney, H. A. 2002. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag, New York.
    • Chen, H., Tian, H., Liu, M., Melillo, J., Pan, S. and co-authors. 2006a. Effect of land-cover change on terrestrial carbon dynamics in the southern USA. J. Environ. Qual. 35, 1533-1547.
    • Chen, G. S., Tian, H. Q., Liu, M. L., Ren, W., Zhang, C. and co-authors. 2006b. Climate impacts on China's terrestrial carbon cycle: an assessment with the dynamic land ecosystem model, In: Environmental Modeling and Simulation (ed. H. Q., Tian). ACTA Press, Calgary, Alberta, Canada, 56-70.
    • Cheng, L. 2006. The influence of elevated atmospheric CO2 on agricultural soil processes and bioavailability of trace elements (in Chinese). Master Thesis. Graduate University of Chinese Academy of Sciences, Beijing, 46-72.
    • Cheng, W., Sakai, H., Hartley, A., Yagi, K. and Hasegawa, T. 2008. Increased night temperature reduces the stimulatory effect of elevated carbon dioxide concentration on methane emission from rice paddy soil. Glob. Change Biol. 14, 644-656.
    • Clerbaux, C., Hadji-Lazaro, J., Turquety, S., Megie, G. and Coheur, P.-F. 2003. Trace gas measurements from infrared satellite for chemistry and climate applications. Atmos. Chem. Phys. 3, 1495-1508, SRef-ID: 1680-7324/acp/2003-3-1495.
    • Cole, V., Cerri, C., Minami, K., Mosier, A., Rosenberg, N. and coauthors. 1996. Agricultural options for mitigation of greenhouse gas emissions. In: Climate Change 1995. Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses (eds Watson, R.T., Zynuowera, M.C. and Moss, R.H.). IPCC Working Group II. Cambridge University Press, Cambridge, 745-771.
    • Collatz, G. J., Ball, J. T., Grivet, C. and Berry, J. A. 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric. Forest Meteorol. 54(2-4), 107-136.
    • Collatz, G. J., Ribas-Carbo, M. and Berry, J. A. 1992. Coupled photosynthesis-stomatal conductance model for leaves of C4 plants. Aust. J. Plant Physiol. 19, 519-538.
    • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M. and co-authors. 2007. Couplings between changes in the climate system and biogeochemistry. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.). Cambridge University Press, Cambridge, UK and New York, NY, USA.
    • Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B. and co-authors. 2006. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation, Global Biogeochem. Cycle 20, GB4003, doi:10.1029/2005GB002672.
    • Dhakhwa, G. B., Campbell, C. L., LeDuc, S. K., Cooter, E. J. 1997. Maize growth: assessing the effects of global warming and CO2 fertilization with crop models. Agric. Forest Meteorol. 87, 253- 272.
    • Dougherty, R., Bradford, J., Coyne, P. and Sims, P. L. 1994. Applying an empirical model of stomatal conductance to three C4 grasses. Agric. Forest Meteorol. 67, 269-290.
    • Ellert, B. H. and Janzen, H. H. 1999. Short-term influence of tillage on CO2 fluxes from a semi-arid soil on the Canadian prairies. Soil Till. Res. 50, 21-32.
    • Enting, I. G., Wigley, T. M. L. and Heimann, M. 1994. Future emissions and concentrations of carbon dioxide: key ocean/yrtmosphere/land analyses, CSIRO Division of Atmospheric Research Technical Paper No. 31.
    • Farquhar, G. D., Caemmerer, S. and Berry, J. A. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90.
    • Felzer, B. S., Reilly, J. M., Kicklighter, D. W., Sarofim, M., Wang, C. and co-authors. 2005. Future effects of ozone on carbon sequestration and climate change policy using a global biochemistry model. Clim. Change 73, 195-425.
    • Food and Agriculture Organization of the United Nations (FAO). 2001. Statistical Database of the Food and Agricultural Organization of the United Nations. Available at: http://apps.fio.org/. Last accessed Dec 2009.
    • Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R. and coauthors. 2007. R.: 25 Changes in atmospheric constituents and in radiative forcing, In: Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H. L.). Cambridge University Press, Cambridge, UK and New York, NY, USA, 129-234.
    • Franzluebbers, A. J., Hons, F. M. and Zuberer, D. A. 1995. Tillage-induced seasonal changes in soil physical properties affecting soil CO2 evolution under intensive cropping. Soil Till. Res. 34, 41-60.
    • Fu, C. B. and Wen, G. 1999. Variation of ecosystems over East Asia in association with seasonal interannual and decadal monsoon climate variability. Clim. Change 43, 477-494.
    • Ge, Q. S., Dai, J. H., He, F. N., Pan, Y. and Wang, M. M. 2008. Land use changes and their relations with carbon cycles over the past 300 years in China, Sci. China Ser. D, 51, 871-884.
    • Happell, J. D. and Chanton, J. P. 1995. Methane transfer across the water-air interface in stagnant wooded swamps of Florida: evaluation of mass-transfer coefficients and isotopic fractionation. Limnol. Oceanogr. 40, 290-298.
    • Heagle, A. S. 1989. Ozone and crop yield, Annu. Rev. Physiol. 27, 397-423.
    • Hendrix, P. F., Chun-Ru, H. and Groffman, P. M. 1998. Soil respiration in conventional and no-tillage agroecosystems under different winter cover crop rotations. Soil Till. Res. 12, 135-148.
    • Houghton, R. A. and Goodale, C. L. 2004. Effects of land-use change on the carbon balance of terrestrial ecosystems. In: Ecosystems and Land Use Change (eds DeFries, R. S., Asner, G. P. and Houghton, R. A.). American Geophysical Union, Washington, DC, 85-98.
    • Houghton, R. A. and Hackler, J. L. 2003. Sources and sinks of carbon from land-use change in China, Global Biogeochem. Cycle 17, 1029-1034.
    • Huang, Y. and Sun, W. J. 2006. Changes in topsoil organic carbon of croplands in mainland China over the last two decades, Chinese Sci. Bull. 51, 1785-1803.
    • Huang, Y., Sass, R. L. and Fisher, F. M. 1998. Model estimates of methane emission from irrigated rice cultivation of China. Glob. Change Biol. 4, 809-821.
    • Huang, Y., Zhang, W., Zheng, X., Li, J. and Yu, Y. 2004. Modeling methane emission from rice paddies with various agricultural practices. J. Geophys. Res. 109, doi:10.1029/2003JD004401.
    • Huang,Y., Zhang, W., Zheng X. H., Han, S. H., and Yu, Y. Q. 2006. Estimates of methane emissions from Chinese rice paddies by linking a model to GIS database. Acta Ecologica Sinica. 26, 980-988.
    • Huang, Y., Zhang, W., Sun, W. J. and Zheng, X. H. 2007. Net primary production of Chinese croplands from 1950 to 1999. Ecol. Appl. 17(3), 692-701.
    • Huang, Y., Yu, Y. Q. and Zhang, W. 2009. Agro-C: A biogeophysical model for simulating the carbon budget of agroecosystems. Agric. Forest Meteorol. 149, 106-129.
    • Huke, R. E. and Huke, E. H. 1997. Rice Areas by Type of Culture: South Southeast, and East Asia. Intl. Rice research Institute (IRRI), Los Banos, Philippines, 55
    • Inubushi, K., Cheng, W., Aonuma, S., Hoque, M. M., Kobayashi, K. and co-authors. 2003. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field. Global Change Biol. 9, 1458- 1464.
    • Johnson, D. W. 1992. Effects of forest management on soil carbon storage. Water Air Soil Poll. 64, 83-120.
    • Kettunen, A. 2003. Connecting methane fluxes to vegetation cover and water table fluctuations at microsite level: a modeling study. Global Biogeochem. Cycle 17, 1051, doi:10.1029/2002GB001958.
    • Kimball, J. S., White, M. A. and Running, S. W. 1997. BIOME-BGC simulations of stand hydrologic processes for BOREAS. J. Geophys. Res. 102(24), 29,043-29,051.
    • La Scala, N., Bolonhezi, D. and Pereira, G. T. 2006. Short-term soil CO2 emission after conventional and reduced tillage of a no-till sugar cane area in southern. Brazil. Soil Till. Res. 91, 244-248.
    • Leff, B., Ramankutty, N. and Foley, J. A. 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cycle 18, GB1009, doi:10.1029/2003GB002108.
    • Li, C. S. 2000. Modeling trace gas emissions from agricultural ecosystems. Nutr. Cycl. Agroecosys. 58, 259-276.
    • Li, C. S., Frolking, S., Xiao, X. M., Moore, III. B., Boles, S. and coauthors. 2005. Modeling impacts of farming management alternatives on CO2, CH4, and N2O emissions: a case study for water management of rice agriculture of China. Global Biogeochem. Cycle 19, doi:10.1029/2004GB002341.
    • Li, C., Salas, W., DeAngelo, B. and Rose, S. 2006. Assessing alternatives for mitigating net greenhouse gas emissions and increasing yields from rice production in China over the next 20 years. J. Environ. Qual. 35, 1554-1565.
    • Liu, J., Liu, M., Tian, H. Q., Zhuang, D., Zhang, Z. and co-authors. 2005. Current status and recent changes of cropland in China: an analysis based on Landsat TM data. Remote Sens. Environ. 98, 442-456.
    • Liu, M. L. and Tian, H. Q. 2010. China's land-cover and land-use change from 1700 to 2005: estimations from high-resolution satellite data and historical archives, Global Biogeochem. Cycle 24, GB3003, doi:10.1029/2009GB003687.
    • Liu, M. L., Tian, H., Chen, G., Ren, W., Zhang, C. and co-authors. 2008. Effects of land use and land cover change on evapotranspiration and water yield in China during the 20th century. J. Am. Water Res. Assoc. 44, 1193-1207.
    • Lloyd, J. and Taylor, J. A. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315-323.
    • Lu, C. Q. and Tian, H. Q. 2007. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data, J. Geophys. Res., 112(D22S05), doi:10.1029/2006JD007990.
    • Lu, C. 2009. Atmospheric nitrogen deposition and terrestrial ecosystem carbon cycle in China, Ph.D. Dissertation, Chinese Academy of Sciences, Beijing, 204 pp.
    • Lu, F., Wang, X. K., Han, B., Ouyang, Z. Y., Duan, X. N. and co-authors. 2009. Soil carbon sequestrations by nitrogen fertilizer application, straw return and no-tillage in China's cropland. Global Change Biol. 15, 281-305.
    • Luo, Y., Gerten, D., le Maire, G., Parton, W. J., Weng, E. and co-authors. 2009. Modelled interactive effects of precipitation, temperature, and CO2 on ecosystem carbon and water dynamics in different climatic zones. Global Change Biol. 14, 1986-1999.
    • Mann, L. K. 1986. Changes in soil carbon storage after cultivation. Soil Sci. 142, 279-288.
    • McCree, K. J. 1970. An equation for the rate of respiration of white clover plants grown under controlled conditions. In: Prediction and measurement of photosynthetic productivity (Proc. IBPIPP Technical meeting, Trebon) (ed Setlik, I.). Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands, 221-229.
    • Mer, J. L. and Roger, P. 2001. Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25-50.
    • Minoda, T., Kimura, M. and Wada, E. 1996. Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J. Geophys. Res. 101, 21091- 21097.
    • Neff, J. C., Hobbie, S. H. and Vitousek, P. M. 2000. Controls over the production and stoichiomet of dissolved organic carbon, nitrogen and phosphorus in tropical soils. Biogeochemistry 51, 283-302.
    • Oleson, K., Dai, Y., Bonan, G., Bosilovich, M., Dickinson, R. and coauthors. 2004. Technical description of the community land model (CLM). Technical Note NCAR/TN-461+STR, National Center for Atmospheric Research.
    • Pancotto, V. A., van Bodegom, P. M., van Hal, J., van Logtestijn, R. S. P., Blokker, P. and co-authors. 2010. N deposition and elevated CO2 on methane emissions: differential responses of indirect effects compared to direct effects through litter chemistry feedbacks. J. Geophys. Res. 115, doi:10.1029/2009JG001099.
    • Ramankutty, N. and Foley, J. A. 1998. Characterizing patterns of global land use: an analysis of global croplands data. Global Biogeochem. Cycle 12, 667-685.
    • Ren, W., Tian, H. Q., Liu, M. L., Zhang, C., Chen, G. S. and co-authors. 2007a. Tropospheric ozone pollution and its influence on net primary productivity and carbon storage in terrestrial ecosystems of China. J. Geophys. Res. 112, D22S09, doi:10.1029/2007JD008521.
    • Ren, W., Tian, H. Q., Chen, G. S., Liu, M. L., Zhang, C. and coauthors. 2007b. Influence of ozone pollution and climate variability on grassland ecosystem productivity across China. Environ. Pollut. 149, 327-335.
    • Ryan M. G. 1991. Effects of climate change on plant respiration. Ecol. Appl. 1(2), 157-167.
    • Ryan, M. G., Lavigne, M. and Gower, S. T. 1997. Annual carbon cost of autotrophic respiration in boreal forest ecosystem in relation to species and climate. J. Geophys. Res. 102, 28871-28884.
    • Schindler, D. W. and Bayley, S. E. 1993. The biosphere as an increasing sink for atmospheric carbon: estimates from increased nitrogen deposition. Global Biogeochem. Cycle 7, 717-733.
    • Sellers, P. J., Berry, J. A., Collatz, G. J., Field, C. B. and Hall, F. G. 1992. Canopy reflectance, photosynthesis and transpiration, III. A reanalysis using improved leaf models and a new canopy integration scheme. Remote Sens. Environ. 42, 187-216.
    • Shen, R. X., Shangguan, X. J., Wang, M. X., Wang, Y., Zhang, W. and co-authors. 1995. Methane emission from rice fields in Guangdong region and the spatial variation of methane emission in China (in Chinese). Adv. Earth Sci. 10(4), 387-392.
    • Shi, X. Z., Yu, D. S., Warner, E. D., Pan, X. Z., Petersen, G. W., and co-authors. 2004. Soil database of 1:1,000,000 digital soil survey and reference system of the Chinese genetic soil classification system. Soil Survey Horizon 45, 129-136.
    • Sitch, S., Cox, P. M., Collins, W. J. and Huntingford, C. 2007. Indirect radiative forcing of climate change through ozone effects on the landcarbon sink. Nature 448, 791-794.
    • Song, C., Xu, X., Tian, H. and Wang, Y. 2009. Ecosystem-atmosphere exchange of CH4 and N2O and ecosystem respiration in wetlands in the Sanjiang Plain, Northeastern China. Global Change Biol. 15, 692-705.
    • Sorokin, D., Jones, B. and Gijs Kuenen, J. 2000. An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4, 145-155.
    • Tao, F. L., Yokozawa, M., Zhang, Z., Hayashi, Y., Grassl, H. and coauthors. 2004. Variability in climatology and agricultural production in China in association with the East Asian summer monsoon and EL Nino Southern Oscillatin. Clim. Res. 28, 23-30.
    • Tao, F. L., Yokozawa, M., Liu, J. Y. and Zhang, Z. 2008. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trands. Clim. Res. 38, 83-94.
    • Tao, F. L., Zhang, Z., Liu, J. Y. and Yokozawa, M. 2009. Modelling the impacts of weather and climate variability on crop productivity over a large area: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol. 149, doi:101016/iagrformet 200902015.
    • Thornley, J. H. M. 1970. Respiration, growth and maintenance in plants. Nature 227, 304-305.
    • Thornley, J. H. M. and Cannell, M. G. R. 2000. Modelling the components of plant respiration: representation and realism. Ann. Bot. Lond. 85, 55-67.
    • Thornton, P. E., Running, S. W. and White, M. A. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190, 241-251.
    • Tian, H. Q., Melillo, J. M., Kicklighter, D. W., McGuire, A. D. and Helfrich, J. 1999. The sensitivity of terrestrial carbon storage to historical atmospheric CO2 and climate variability in the United States. Tellus 51B, 414-452.
    • Tian, H. Q., Melillo, J. M., Kicklighter, D. W., Pan, S. F. and co-authors. 2003. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle, Global Planet. Change, 37, 201- 217.
    • Tian, H. Q., Liu, M. L., Zhang, C., Ren, W., Chen, G. S. and co-authors. 2005. DLEM - The Dynamic Land Ecosystem Model, User Manual, the Ecosystem Dynamics and Global Ecology Laboratory (EDGE), Auburn University.
    • Tian, H., Chen, G. S., Liu, M. L., Zhang, C., Sun, G. and co-authors. 2010a. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895-2007. Forest Ecol. Manage. 259, 1311-1327.
    • Tian, H., Xu, X., Liu, M., Ren, W., Zhang, C. and co-authors. 2010b. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979-2008: application of a global biogeochemistry model. Biogeosciences 7, 2673-2694.
    • Tian, H. Q., Chen, G. S., Zhang, C., Melillo, J. M. and Hall, C. 2010c. Pattern and variation of C:N:P ratios in China's soils: a synthesis of observational data. Biogeochemistry 98, 139-151.
    • Tian, H. Q., Xu, X. F., Zhang, C., Ren, W., Chen, G. S. and co-authors. 2008. Forecasting and Assessing the Large-scale and Long-term Impacts of Global Environmental Change on Terrestrial Ecosystems in the United States and China using an Integrated Regional Modeling Approach. In Real World Ecology: Large-Scale and Long-Term Case Studies and Methods (eds Miao, S., Carstenn, S. and Nungesser, M.). Springer, New York.
    • Trenberth, K. E., Jones, P. D., Ambenje, P., Bojariu, R., Easterling, D. and co-authors. 2007: Observations: surface and atmospheric climate change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L.). Cambridge University Press, Cambridge, UK and New York, NY, USA.
    • Vukicevic, T., Braswell, B. H. and Schimel, D. 2001. Diagnostic study of temperature controls on global terrestrial carbon exchange. Tellus 53B, 150-170.
    • Walter, B. P., Heimann, M. and Matthews, E. 2001. Modeling modern methane emissions from natural wetlands 1. model description and results. J. Geophys. Res. 106, 34189-34206.
    • Wang, P., Huang, Y. and Zhang, W. 2009. Estimates of methane emission from rice paddies in China over the period of 1955-2005 by linking the CH4MOD model to a GIS database. Adv. Clim. Change Res. 5(5), 291-297.
    • Wang, X. K., Manning, W., Feng, Z. W. and Zhu, Y. G. 2007. Groundlevel ozone in China: distribution and effects on crop yields. Environ. Pollut. 147, 394-400
    • Wang, Z. P., Han, X. G. and Li, L. H. 2008. Effects of grassland conversion to cropland on soil organic carbon in the temperate Inner Mongolia. J. Environ. Manage. 86, 529-534.
    • West, T. O. and Post, W. M. 2002. Soil organic carbon sequestration rates by tillage and crop rotation: a global data analysis. Soil Sci. Soc. Am. J. 66, 1930-1946.
    • Wu, L. and Cai, Z. C. 2007. Estimation of the change of topsoil organic carbon of croplands in China based on long-term experimental data. Ecol. Envir. 16, 1768-1774.
    • Wu, H. B. and Ye, Z. J. 1993. Preliminary estimated amount of methane emission from China rice paddy fields. China Environ. Sci. 13(1), 76-80 (In Chinese).
    • Xie, B. H., Zheng, X. H., Zhou, Z. X., Gu, J. X., Zhu, B. and co-authors. 2009. Effects of nitrogen fertilizer on CH4 emission from rice fields: multi-site field observations. Plant Soil. 326, doi:10.1007/s11104- 009-0020-3.
    • Xu, X. F., Tian, H. Q., Zhang, C., Liu, M. L., Ren, W., Chen, G. S., and Lu, C. 2010. Attribution of spatial and temporal variations in terrestrial ecosystem methane flux over North America. Biogeosciences 7, 1-9.
    • Xu, Z. J., Zheng, X. H., Wang, Y. S., Han, S. H., Huang, Y. and coauthors. 2004. Effects of elevated CO2 and N fertilization on CH4 emissions from paddy rice fields. Global Biogeochem. Cycle. 18, GB3009, doi:10.1029/2004GB002233.
    • Yagi, K. and Minami, K. 1990. Effect of organic matter application on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr. 36, 599-610.
    • Yamamoto, S., Alcauskas, J. B. and Crozier, T. E. 1976. Solubility of methane in distilled water and seawater. J. Chem. Eng. Data 21, 78-80.
    • Yan, H. M., Cao, M. K., Liu, J. Y., Zhuang, D. F., Guo, J. K. and coauthors. 2005. Characterizing spatial patterns of multiple cropping system in China from multi-temporal remote sensing images. Trans. CSAE 21(4), 85-90.
    • Yan, H. M., Cao, M. K., Liu, J. Y. and Tao, B. 2007. Potential and sustainability for carbon sequestration with improved soil management in agricultural soils of China. Agric. Ecosyst. Environ. 121, 325- 335.
    • Yan, H. M., Liu, J. Y., Huang, H. Q., Tao, B. and Cao, M. K. 2009a. Assessing the consequence of land use change on agricultural productivity in China. Global Planet. Change 67, doi:10.1016/j.gloplacha. 2008.12.012.
    • Yan, X. Y., Akiyama, H., Yagi, K. and Akimoto, H. 2009b. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines. Global Biogeochem. Cycle. 23, GB2002, doi:2010.1029/2008GB003299.
    • Yang, J. P., Ding, Y. J., Chen, R. S. and Liu, L. Y. 2002. The interdecadal fluctuation of dry and wet cliame boundaries in China in recent 50 years. Acta Geol. Sin-Engl. 57, 655-661.
    • Yang, Y. H., Mohammat, A., Feng, J. M., Zhou, R. and Fang, J. Y. 2007. Storage, patterns and environmental controls of soil organic carbon in China. Biogeochemistry 84, 131-141.
    • Yu, X. F., Zhuang, D. F., Hou, X. Y. and Chen, H. 2005. Forest phenological patterns of Northeast China inferred from MODIS data. J. Geogr. Sci. 15, 239-246
    • Zhang, C., Tian, H. Q., Chappelka, A. H., Ren, W., Chen, H. and coauthors. 2007a. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountain. Environ. Pollut. 149, 336-347.
    • Zhang, W., Yu, Y. Q., Sun, W. J. and Huang, Y. 2007b. Simulation of soil organic carbon dynamics in Chinese Rice Paddies from 1980 to 2000. Pedosphere 17, 1-10.
    • Zheng, X. H., Zhou, Z. X., Wang, Y. S., Zhu, J. G., Wang, Y. L. and coauthors 2006. Nitrogen-regulated effects of free-air CO2 enrichment on methane emissions from paddy rice fields. Global Change Biol. 12, 1717-1732.
    • Zhuang, Q. L., Melillo, J. M., Kicklighter, D. W., Prinn, R. G., McGuire, A. D. and co-authors. 2004. Methane fluxes between Terrestrial Ecosystems and the atmosphere at northern high latitudes during the past century: a retrospective analysis with a process-based biogeochemistry model. Global Biogeochem. Cycle 18, GB3010, doi:10.1029/2004GB002239.
    • Ziska, L. H., Moya, T. B., Wassmann, R., Namuco, O. S., Lantin, R. S. and co-authors. 1998. Long-term growth at elevated carbon dioxide stimulates methane emission in tropical paddy rice. Global Change Biol. 4, 657-665.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from