Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhou, Xuhui; Yan, Yaner; Luo, Yiqi; Chen, Jianmin (2014)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, C input, CMIP5, net primary productivity, ecosystem C storage capacity; ecosystem residence time; C input; model intercomparison; uncertainty; CIMP5; net primary productivity, ecosystem C storage capacity, Ecology; Biogeochemistry; Modeling, uncertainty, ecosystem residence time, model intercomparison
Ecosystem carbon (C) storage strongly regulates climate-C cycle feedback and is largely determined by both C residence time and C input from net primary productivity (NPP). However, spatial patterns of ecosystem C storage and its variation have not been well quantified in earth system models (ESMs), which is essential to predict future climate change and guide model development. We intended to evaluate spatial patterns of ecosystem C storage capacity simulated by ESMs as part of the 5th Climate Model Intercomparison Project (CMIP5) and explore the sources of multi-model variation from mean residence time (MRT) and/or C inputs. Five ESMs were evaluated, including C inputs (NPP and [gross primary productivity] GPP), outputs (autotrophic/heterotrophic respiration) and pools (vegetation, litter and soil C). ESMs reasonably simulated the NPP and NPP/GPP ratio compared with Moderate Resolution Imaging Spectroradiometer (MODIS) estimates except NorESM. However, all of the models significantly underestimated ecosystem MRT, resulting in underestimation of ecosystem C storage capacity. CCSM predicted the lowest ecosystem C storage capacity (~10 kg C m−2) with the lowest MRT values (14 yr), while MIROC-ESM estimated the highest ecosystem C storage capacity (~36 kg C m−2) with the longest MRT (44 yr). Ecosystem C storage capacity varied considerably among models, with larger variation at high latitudes and in Australia, mainly resulting from the differences in the MRTs across models. Our results indicate that additional research is needed to improve post-photosynthesis C-cycle modelling, especially at high latitudes, so that ecosystem C residence time and storage capacity can be appropriately simulated.Keywords: ecosystem C storage capacity, ecosystem residence time, C input, model intercomparison, uncertainty, CMIP5, net primary productivity(Published: 22 May 2014)Citation: Tellus B 2014, 66, 22568, http://dx.doi.org/10.3402/tellusb.v66.22568
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ahlstro¨ m, A., Smith, B., Lindstro¨ m, J., Rummukainen, M. and Uvo, C. B. 2013. GCM characteristics explain the majority of uncertainty in projected 21st century terrestrial ecosystem carbon balance. Biogeosciences. 10, 1517 1528.
    • Arora, V. K. and Boer, G. J. 2005. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Chang. Biol. 11, 39 59.
    • Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L. and co-authors. 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38, L05805.
    • Atkin, O. K., Atkinson, L. J., Fisher, R. A., Campbell, C. D., Zaragoza-Castells, J. and co-authors. 2008. Using temperaturedependent changes in leaf scaling relationships to quantitatively account for thermal acclimation of respiration in a coupled global climate vegetation model. Glob. Chang. Biol. 14, 2709 2726.
    • Barrett, D. J. 2002. Steady state turnover time of carbon in the Australian terrestrial biosphere. Glob. Biogeochem. Cycles. 16(4), 1108. DOI: 1110.1029/2002GB001860.
    • Bowman, D. M., Balch, J. K., Artaxo, P., Bond, W. J., Carlson, J. M. and co-authors. 2009. Fire in the Earth system. Science. 324, 481 484.
    • Canadell, J. G., Le Quere, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T. and co-authors. 2007. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. U. S. A. 104, 18866 18870.
    • Carbone, M. S. and Trumbore, S. E. 2007. Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol. 176, 124 135.
    • Chambers, J. Q., Fisher, J. I., Zeng, H., Chapman, E. L., Baker, D. B. and co-authors. 2007. Hurricane Katrina's carbon footprint on U.S. Gulf Coast forests. Science. 318, 1107.
    • Ciais, P., Friedlingstein, P., Schimel, D. S. and Tans, P. P. 1999. A global calculation of the delta C-13 of soil respired carbon: implications for the biospheric uptake of anthropogenic CO2. Glob. Biogeochem. Cycles. 13, 519 530.
    • Cox, P. M., Betts, R. A., Collins, M., Harris, P. P., Huntingford, C. and co-authors. 2004. Amazonian forest dieback under climate carbon cycle projections for the 21st century. Theor. Appl. Climatol. 78, 137 156.
    • Cramer, W. and Field, C. B. 1999. Comparing global models of terrestrial net primary productivity (NPP): introduction. Glob. Chang. Biol. 5, Iii Iv.
    • Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B., Churkina, G. and co-authors. 1999. Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob. Chang. Biol. 5, 1 15.
    • Davidson, E. A. and Janssens, I. A. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. 440, 165 173.
    • Derrien, D. and Amelung, W. 2011. Computing the mean residence time of soil carbon fractions using stable isotopes: impacts of the model framework. Eur. J. Soil Sci. 62, 237 252.
    • Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. and Whitmore, A. P. 2012. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Chang. Biol. 18, 1781 1796.
    • Emanuel, W. R., Killough, G. G., Post, W. M. and Shugart, H. H. 1984. Modeling terrestrial ecosystems in the global carbon-cycle with shifts in carbon storage capacity by land-use change. Ecology. 65, 970 983.
    • FAO/IIASA/ISRIC/ISSCAS/JRC. 2012. Harmonized World Soil Database (version 1.10). FAO, Rome, Italy and IIASA, Laxenburg, Austria.
    • Friedlingstein, P., Cox, P., Betts, R., Bopp, L., Von Bloh, W. and co-authors. 2006. Climate carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337 3353.
    • Heimann, M. and Reichstein, M. 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature. 451, 289 292.
    • Hiederer, R. and Ko¨ chy, M. 2011. Global Soil Organic Carbon Estimates and the Harmonized World Soil Database. EUR 25225 EN. Publications Office of the European Union, 79 pp.
    • Hopkins, F. M., Torn, M. S. and Trumbore, S. E. 2012. Warming accelerates decomposition of decades-old carbon in forest soils. Proc. Natl. Acad. Sci. U. S. A. 109, E1753 1761.
    • Johnston, M. H., Homann, P. S., Engstrom, J. K. and Grigal, D. F. 1996. Changes in ecosystem carbon storage over 40 years on an old-field forest landscape in east-central Minnesota. Forest Ecol. Manag. 83, 17 26.
    • Kane, E. S. and Vogel, J. G. 2009. Patterns of total ecosystem carbon storage with changes in soil temperature in Boreal Black Spruce forests. Ecosystems. 12, 322 335.
    • Kicklighter, D. W., Bondeau, A., Schloss, A. L., Kaduk, J., McGuire, A. D. and co-authors. 1999. Comparing global models of terrestrial net primary productivity (NPP): global pattern and differentiation by major biomes. Glob. Chang. Biol. 5, 16 24.
    • Knorr, W., Prentice, I. C., House, J. I. and Holland, E. A. 2005. Long-term sensitivity of soil carbon turnover to warming. Nature. 433, 298 301.
    • Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P. and co-authors. 2011. Permafrost carbon climate feedbacks accelerate global warming. Proc. Natl. Acad. Sci. U. S. A. 108, 14769 14774.
    • Krinner, G., Viovy, N., de Noblet-Ducoudre´ , N., Og e´e, J., Polcher, J. and co-authors. 2005. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles. 19, GB1015. DOI: 10.1029/2003 GB002199.
    • Krishan, G., Srivastav, S. K., Kumar, S., Saha, S. K. and Dadhwal, V. K. 2009. Quantifying the underestimation of soil organic carbon by the Walkley and Black*examples from Himalayan and Central Indian soils. Curr. Sci. India. 96, 1133 1136.
    • Lales, J. S., Lasco, R. D. and Geronimo, I. Q. 2001. Carbon storage capacity of agricultural and grassland ecosystems in a geothermal block. Philippine Agr. Sci. 84, 8 18.
    • Lawrence, D. M., Oleson, K. W., Flanner, M. G., Thornton, P. E., Swenson, S. C. and co-authors. 2011. Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst. 3, 1942 2466.
    • Lawrence, P. J. and Chase, T. N. 2007. Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0). Journal of Geophysical Research: Biogeosciences. 112, G01023. DOI: 10.1029/2006JG000168.
    • Le Quere, C., Raupach, M. R., Canadell, J. G., Marland, G., Bopp, L. and co-authors. 2009. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 836.
    • Luo, Y. 2007. Terrestrial carbon cycle feedback to climate warming. Ann. Rev. Ecol. Evol. Syst. 38, 683 712.
    • Luo, Y. Q., White, L. W., Canadell, J. G., DeLucia, E. H., Ellsworth, D. S. and co-authors. 2003. Sustainability of terrestrial carbon sequestration: a case study in Duke Forest with inversion approach. Glob. Biogeochem. Cycles. 17(1), 1021. DOI: 10.1029/2002GB001923.
    • Luo, Y. Q., Wu, L. H., Andrews, J. A., White, L., Matamala, R. and co-authors. 2001. Elevated CO2 differentiates ecosystem carbon processes: deconvolution analysis of Duke Forest FACE data. Ecol. Monogr. 71, 357 376.
    • Mahecha, M. D., Reichstein, M., Carvalhais, N., Lasslop, G., Lange, H. and co-authors. 2010. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science. 329, 838 840.
    • Meyer, R., Joos, F., Esser, G., Heimann, M., Hooss, G., and coauthors 1999. The substitution of high-resolution terrestrial biosphere models and carbon sequestration in response to changing CO2 and climate. Global Biogeochem. Cycles. 13, 785 802.
    • Mooney, H., Canadell, J., Chapin, F., III, Ehleringer, J., Ko¨ rner, C. and co-authors. 1999. Ecosystem Physiology Responses to Global Change. Cambridge University Press, Cambridge, pp. 141 189.
    • Parton, W. J., Stewart, J. W. and Cole, C. V. 1988. Dynamics of C, N, P and S in grassland soils: a model. Biogeochemistry. 5, 109 131.
    • Piao, S., Luyssaert, S., Ciais, P., Janssens, I. A., Chen, A. and coauthors. 2010. Forest annual carbon cost: a global-scale analysis of autotrophic respiration. Ecology. 91, 652 661.
    • Pinsonneault, A. J., Matthews, H. D. and Kothavala, Z. 2011. Benchmarking climate carbon model simulations against forest FACE data. Atmos. Ocean. 49, 41 50.
    • Prentice, I. C., Bondeau, A., Cramer, W., Harrison, S. P., Hickler, T. and co-authors. 2007. Dynamic global vegetation modeling: quantifying terrestrial ecosystem responses to large-scale environmental change. In: Terrestrial Ecosystems in a Changing World. (eds. J. G. Canadell, D. E. Pataki and L. Pitelka), Springer, Berlin, Heidelberg, pp. 175 192.
    • Raich, J. W. and Schlesinger, W. H. 1992. The global carbondioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B. 44, 81 99.
    • Randerson, J. T., Thompson, M. V. and Field, C. B. 1999. Linking C-13-based estimates of land and ocean sinks with predictions of carbon storage from CO2 fertilization of plant growth. Tellus. B. 51, 668 678.
    • Ruimy, A., Dedieu, G. and Saugier, B. 1996. TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Glob. Biogeochem. Cycles. 10, 269 285.
    • Sato, H., Itoh, A. and Kohyama, T. 2007. SEIB DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol. Model. 200, 279 307.
    • Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G. and co-authors. 2011. Persistence of soil organic matter as an ecosystem property. Nature. 478, 49 56.
    • Schuur, E. A. G., Vogel, J. G., Crummer, K. G., Lee, H., Sickman, J. O. and co-authors. 2009. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature. 459, 556 559.
    • Solomon, S., Qin, D., Manning, M., Marquis, M., Averyt, K. and co-authors. 2007. Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
    • Strassmann, K. M., Joos, F. and Fischer, G. 2008. Simulating effects of land use changes on carbon fluxes: past contributions to atmospheric CO2 increases and future commitments due to losses of terrestrial sink capacity. Tellus B. 60, 583 603.
    • Tang, J. W., Yin, J. X., Qi, J. F., Jepsen, M. R. and Lu, X. T. 2012. Ecosystem carbon storage of tropical forests over limestone in Xishuangbanna, SW China. J. Trop. Forest Sci. 24, 399 407.
    • Thompson, M. V. and Randerson, J. T. 1999. Impulse response functions of terrestrial carbon cycle models: method and application. Glob. Chang. Biol. 5, 371 394.
    • Tian, H. Q., Chen, G. S., Zhang, C., Liu, M. L., Sun, G. and coauthors. 2012. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern united states. Ecosystems. 15, 674 694.
    • Todd-Brown, K. E. O., Randerson, J. T., Post, W. M., Hoffman, F. M., Tarnocai, C. and co-authors. 2013. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences. 10, 1717 1736.
    • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G., Mu, M. and co-authors. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997 2009). Atmos. Chem. Phys. 10, 11707 11735.
    • Wang, W., Dungan, J., Hashimoto, H., Michaelis, A. R., Milesi, C. and co-authors. 2011. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. primary production. Glob. Chang. Biol. 17, 1350 1366.
    • Weng, E. S., Luo, Y. Q., Wang, W., Wang, H., Hayes, D. J. and co-authors. 2012. Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research-Biogeosciences. 117, G3, DOI: 10.1029/ 2012JG002040.
    • Watanabe, S., Hajima, T., Sudo, K., Nagashima, T., Takemura, T. and co-authors. 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845 872.
    • Xia, J., Luo, Y., Wang, Y. P. and Hararuk, O. 2013. Traceable components of terrestrial carbon storage capacity in biogeochemical models. Glob. Chang. Biol. 19, 2104 2116.
    • Xu, T., White, L., Hui, D. F. and Luo, Y. Q. 2006. Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles. 20, GB2007. DOI: 10.1029/2005GB002468.
    • Zhang, Y., Xu, M., Chen, H. and Adams, J. 2009. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, geographical location and climate. Glob. Ecol. Biogeogr. 18, 280 290.
    • Zhao, M. and Running, S. W. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science. 329, 940 943.
    • Zhou, T. and Luo, Y. Q. 2008. Spatial patterns of ecosystem carbon residence time and NPP-driven carbon uptake in the conterminous United States. Glob. Biogeochem. Cycles. 22, GB3032. DOI: 10.1029/2007GB002939.
    • Zhou, X., Zhou, T. and Luo, Y. 2012. Uncertainties in carbon residence time and NPP-driven carbon uptake in terrestrial ecosystems of the conterminous USA: a Bayesian approach. Tellus B. 64, 17223.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | LTREB: Effects of Warming a...
  • NSF | Data-Model Fusion at AmeriF...
  • NSF | Development of a Data Assim...
  • NSF | RCN: Forecasts Of Resource ...
  • NSF | Collaborative Research: EPS...

Cite this article