Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Iwasaka, Yasunobu (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The back-scattering coefficient and depolarization ratio of antarctic stratospheric aerosols were observed by a lidar at Syowa Station (69°00'S, 39°35'E) in 1983 in order to understand the nature of polar stratospheric aerosols. Balloon measurement was also made on 3 June to obtain the number concentration of the particles. The balloon data showed a large concentration of particles with radius larger than 0.15 μm (15 particles/cm3 in the lower stratosphere) and a size distribution which was rich in smaller size particles (N(r > 0.15 μm)/ N(r> 0.25 μm)= 12 ~ 80, where N(r>0.15 μm) and N(r>0.25 μm) are the number concentrations of particles with radius larger than 0.15 μm and 0.25 μm, respectively). During early June, the back-scattering coefficient rapidly increased, but the depolarization ratio was at a low level, at most 0.15. After mid-June, the depolarization ratio increased as the winter progressed, and this suggests that most of the stratospheric particles had non-spherical shapes (possibly ice crystal particles) in mid-winter. The lidar measurement showed that the stratospheric particles layer was transported downward at the rate of 0.8 mm/s during winter. The mass of water transported from the stratosphere to the troposphere is estimated to be about 5 x 107 ton per winter season if we assume that the settling rate of the layer is due to gravitational sedimentation of ice crystal particles. If it is due to downward air motion carrying smaller crystals, this is reduced to 5 x 104 tons.DOI: 10.1111/j.1600-0889.1986.tb00261.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 0940: ' 'dlo+ Ayers. G . P., Gillett, R. W. and Gras, J . L. 1980. O n the vapor pressure of sulfate acid. Geophys. Res. Lett. 7, 433-436.
    • Gable. C . M., Betz, H. F. an4 Maron, S. M. 1950. Phase equilibria of the system sulfur trioxide-water. J . A m . Chem. Soc. 72, 144514423,
    • Ellsaesser, H. W. 1974. Water budget of the stratosphere, Third C I A P conference, Rep. DOT-TSCOST-74-15, U.S. Dep. Transp., 273-283.
    • Ellsaesser, H. W. 1983. Stratospheric water vapor. J . Guophys. Rex. 88, 3897-3906.
    • Gmitro, J. I. and Vermeulen, T. 1964. Vapor-liquid equilibria for aqueous sulfuric acid. A.1.Ch.E. J . 10, 740-746.
    • Hayashida. S., Kobayashi, A. and Iwasaka, Y . 1984. Lidar measurements of stratospheric aerosol content and depolarization ratios after the eruption of El Chichon volcano: Measurements at Nagoya, Japan. Geofys. Int. 23-2, 277-288.
    • Hallett. J . and Lewis. R. E. J . 1967. Mother-of-pearl clouds. Weather 22, 56-65.
    • Hobbs. P. 1974. Icephysics. Clarendon Press, 662 pp.
    • Hofmann, D. J., Rosen, J . M., Reiter, R. and Jager, H . 1983. Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions. J . Geophys. Res. 88, 3717-3782.
    • Hofmann. D. J. and Rosen, J . M. 1984. Detection of El Chichon volcanic aerosol in the antarctic stratosphere. Anrarct. J . 16, 196-199.
    • Iwasaka, Y . 1985. Lidar measurement of the strdtospheric aerosol layer at Syowa Station (69"OO'S. 39"35'E), Antarctica. J . Meteorol. Soc. Japan 63, 283- 287.
    • Iwasaka, Y . , Hirasawa. T. and Fukunishi, H . 1985a. Lidar measurements on the Antarctic stratospheric aerosol layer [ I ] Winter enhancement. J . Geomug. Geoelwtr. 37, 1087- 1095.
    • Iwasaka. Y., Itoh. S . , Yasuda, M. and Ohtani, H . 1985b. Laser radar system for atmospheric studies at Syowa Station, Antarctica. N E C Research & Development N o . 76, 44- 54.
    • Iwasaka, Y . 1986. Lidar measurements on the Antarctic stratospheric aerosol layer (111. The changes of layer height and thickness in winter. J . Geomag. Geoelecrr. 38. 99- 109.
    • Kobayashi, T. 1965. Vapour growth of ice crystal between -40 and -90°C. J . Meteorol. Soc. Japan 43, 359- 367.
    • Kumai, M. 1966. Electron microscopic study of ice-fog and ice-crystal nuclei in Alaska. J . Mereorol. Soc. Japan 45, 185-194.
    • McCormick, M. P., Hamill, P. and Farrukh, U. 0. 1985. Characteristics of polar stratospheric clouds as observed by SAM 11. SAGE, and lidar. J . Meteorol. Soc. Jupati 63, 261-276.
    • McCormick, M. P., Steele. H . M., Hamill, P., Chu. W. P. and Swissler, T . J. 1982. Polar stratospheric cloud sightings by SAM 11. J . Atmos. Sci.39, 1387- 1397.
    • Northam. C . B., Rosen J . M., Melfi. S. H., Pepin, T. J.. McCormick. M. P., Hofmann, D. J . and Fuller, W. H. 1974. Dustsonde and lidar measurements of stratospheric aerosols: A comparison. Appl. Opt. 13, 2416 -2421.
    • Ohtake. T . 1970. Unusual crystal in ice fog. J . Armos. S C ~2.7, 509-5 1 I .
    • Pal, S. R. and Carswell. A. I . 1976. Multiple scattering in atmospheric clouds: Lidar observations. Appl. O p f . I S , 1990 ~ 1 9 9 5 .
    • Russell, P. B., Viezee, W., Hake, Jr., R.D. and Collis, R . T. H . 1976. Lidar observations of the stratospheric aerosol : California, October 1972-March 1974. Q . J .R . Metuorol. Soc. 102, 675-695.
    • Rosen, J . M., Hofmann. D. J . and Laby, J . 1975. Stratospheric aerosol measurements 11: The worldwide distribution. J . Arrnos. Sci.32, 1457-1462.
    • Stanford, J . L. 1973. On the physics of stratospheric (nacreous) cloud formation. Tellus 25, 479-482.
    • Steele, H. M. and Hamill, P. 1981. Effects of temperature and humidity on the growth and optical properties of sulfuric acid-water droplets in the stratosphere. J . Aerosol Sci. 12, 517-528.
    • Steele. H. M . . Hamill, P.. McCormick, M . P. and Swissler. T. J . 1983. The formation of polar stratospheric cloud. J . Atmos. Sci. 40. 2055-2067.
    • Thuman, W. C . and Robinson, E. 1954. Studies of Alaskan ice-fog particles. J . Mereorol. 11, 151-156.
    • Viggiano. A. A. and Arnold, F. 1983. Stratospheric sulfuric acid vapor: New and update measurements. J . G ~ W P ~RJeX.?.88, 1457-1462.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from