LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lee, Xuhui; Smith, Ronald; Williams, John (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
In this paper, we report the results of the analysis of two high-resolution time-series of water vapour 18O/16O ratio (δv) in surface air observed in Connecticut, USA. On an annual time-scale, δv is a linear function of ln w, where w is water vapour mixing ratio, and is approximated by a Rayleigh distillation model with partial (80%) rainout. On time scales a few days, δv shows considerable variations, often exceeding 20 per mil, and is higher in the wetting phase than in the drying phase of a weather cycle. In precipitation events, the vapour in the surface layer is in general brought to state of equilibrium with falling raindrops but not with snowflakes. On a diurnal time-scale, a peak-to-peak variation of 1–2 per mil is observed at a coastal site. At an interior site, evidence of a diurnal pattern is present only on days of low humidity. Our results suggest that the intercept parameter of the Keeling plot is an ambiguous quantity and should not be interpreted as being equivalent to the isotopic signature of evapotranspiration.DOI: 10.1111/j.1600-0889.2006.00191.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Barr, A. B. and Betts, A. K. 1997. Radiosonde boundary layer budgets above a boreal forest. J. Geophys. Res. 102, 29 205-29 212.
    • Black, T. A., den Hartog, G., Neumann, H. H., Blankan, P. D., Yang, P. C. co-authors. 1996. Annual cycles of water vapor and carbon dioxide fluxes in and above a boreal aspen forest. Global Change Biol. 2, 219-229.
    • Cernusak, L. A., Farquhar, G. D. and Pate, J. S. 2005. Environmental and physiological controls over oxygen and carbon isotope composition of Tasmanian blue gum. Eucalyptus globulus. Tree Physiol. 25, 129-146.
    • Cuntz, M., Ciais, P., Hoffmann, G. and Knorr, W. 2003. A comprehensive global three-dimensional model of δO18 in atmospheric CO2: 1. Validation of surface processes. J. Geophys. Res. 108, Art No 4527.
    • Craig, H. and Gordon, L. I. 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. In: Stable Isotopes in Oceanographic Studies and Paleotemperatures (ed. E. Tongiorgi), Lab. di Geol. Necl., Pisa, Italy, 9-130.
    • Dongmann, G., Neurnberg, H. W., Forstel, H. and Wagener, K. 1974. On the enrichment of H2 18O in leaves of transpiring plants. Radiation and Environmental Biophysics 11, 41-52.
    • Ehhalt, D. H. and O¨ stlund, H. G. 1970. Deuterium in Hurricane Faith 1966: preliminary results. J. Geophys. Res. 75, 2323-2327.
    • Farquhar, G. D., Lloyd, J., Taylor, J. A., Flanagan, L. B., Syvertsen, J. P. co-authors. 1993. Vegetation effects on the isotope composition of oxygen in atmospheric CO2. Nature 363, 439-443.
    • Flanagan, L. B., Comstock, J. P. and Ehleringer, J. R. 1991. Comparison of modeled and observed environmental-influences on the stable oxygen and hydrogen isotope composition of leaf water in PhaseolusVulgaris L. Plant Physiol. 96, 588-596.
    • Francey, R. J. and Tans, P. P. 1987. Latitudinal variation in oxygen-18 of atmospheric CO2. Nature 327, 495-497.
    • Gat, J. R., Klein, B., Kushnir, Y., Roether, W., Wernli, H. co-authors. 2003. Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern. Tellus 55B, 953-965.
    • Gat, J. R. 1996. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 24, 225-262.
    • Harwood, K. G., Gillon, J. S., Griffiths, H. and Broadmeadow, M. S. J. 1998. Diurnal variation of 13CO2, C18O16O and evaporative site enrichment of δH218O in Piper aduncum under field conditions in Trinidad. Plant Cell and Environ. 21, 269-283.
    • He, H. 1998. Stable Isotopes in the Evaporating Atmospheric Water Vapour. PhD Dissertation, Yale University, New Haven, Connecticut, 234 p.
    • He, H. and Smith, R. B. 1999. Stable isotope composition of water vapour in the atmospheric boundary layer above the forests of New England. J. Geophys. Res. 104D, 11657-11673.
    • He, H., Lee, X. and Smith, R. B. 2001. Deuterium in water vapour evaporated from a coastal salt marsh. J. Geophys. Res. 106, 12 183- 12 191.
    • Helliker, B. R., Roden, J. S., Cook, C. and Ehleringer, J. R. 2002. A rapid and precise method for sampling and determining the oxygen isotope ratio of atmospheric water vapor. Rapid Commun. Mass Spectrom. 16, 9292-932.
    • Hoffmann, G., Werner, M. and Heimann, M. 1998. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years. J. Geophys. Res. 103D, 16 871- 16 896.
    • Hu, X., Lee, X., Stevens, D. E. and Smith, R. B. 2002. A numerical study of nocturnal wavelike motion in forests. Bound.-Layer Meteorol. 102, 199-223.
    • Jacob, H. and Sonntag, C. 1991. An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapor and precipitation at Heidelberg, Germany. Tellus 43B, 291-300.
    • Jouzel, J., 1986. Isotopes in cloud physics: multiphase and multistage condensation processes. In: Handbook of Environmental Isotope Geochemistry Vol 2, (eds. B. P. Fritz, and J. C. Foutes), Elsevier Sci., New York, 61-112,
    • Keeling, C. D. 1958. The concentration and isotopic abundances of atmospheric carbon dioxide in rural and marine air. Geochim. Cosmochim. Acta 13, 322-334.
    • Lai, C. T., Ehleringer, J. R., Bond, B. J. and Paw, U. K. T. 2005. Contributions of evaporation, isotopic non-steady state transpiration, and atmospheric mixing on the δ18O of water vapor in Pacific Northwest coniferous forests. Plant Cell and Environment 29, 77-94.
    • Lawrence, J. R., Gedzelman, S. D., Dexheimer, D., Cho, H. K., Carrie, G. D. co-authors. 2004. Stable isotopic composition of water vapour in the tropics. J. Geophys. Res. 109, Art No D06115, doi10.1029/2003JD004046.
    • Lee, X. and Hu, X. 2002. Forest-air fluxes of carbon and energy over non-flat terrain. Bound.- Layer. Meteorol. 103, 277-301.
    • Lee, X., Sargent, S., Smith, R. and Tanner, B. 2005. In-situ measurement of water vapour 18O/16O isotope ratio for atmospheric and ecological applications. J. Atmos. Oceanic Tech. 22, 555-565.
    • Merlivat, L. and Jouzel, J. 1979. Global climatic interpretation of the deuterium-oxygen-18 relationship for precipitation. J. Geophys. Res. 84, 5029-5033.
    • Pierrehumbert, R. T. 1999. Huascaran δ18O as indicator of tropical climate during the last glacial maximum. Geophys. Res. Letters 26, 1345- 1348.
    • Riley, W. J. 2005. A modeling study of the impact of the delta O-18 value of near-surface soil water on the δO18 value of the soil-surface CO2 flux. Geochimica Et. Cosmochimica Acta 69, 1939-1946.
    • Riley, W. J., Still, C. J., Torn, M. S. and Berry, J. A. 2002. A mechanistic model of (H2O)-O-18 and (CO2)-O-18 fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Global Biogeochem. Cycles 16, Art No 1095.
    • Roden, J. S. and Ehleringer, J. R. 1999. Observations of hydrogen and oxygen isotopes in leaf water confirm the Craig-Gordon model under wide-ranging environmental conditions. Plant Physiol. 120, 1165- 1173.
    • Steward, M. K. 1975. Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 80, 1133-1146.
    • Sturm, K., Hoffmann, G., Langmann, B. and Stichler, W. 2005. Simulation of delta O-18 in precipitation by regional circulation model REMOiso. Hydrol. Process. 19, 3425-3444.
    • White, J. W. C. and Gedzelman, S. D. 1984. The isotope composition of atmospheric water vapor and the concurrent meteorological conditions. J. Geophys. Res. 89, 4937-4939.
    • Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A. co-authors. 2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agric. For. Meteorol. 125, 241-258.
    • Wilson, K. B., Hanson, P. J., Mulholland, P. J., Baldocchi, D. D. and Wullschleger, S. D. 2001. A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric. For. Meteorol. 106, 153-168.
    • Zielinski, G. A. and Keim, B. D. 2003. New England Weather, New England Climate. University Press of New England, Lebanon, New Hampshire, 276 p.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: Exp...
  • NSF | Development and Application...

Cite this article

Collected from