LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Claquin, T.; Schulz, M.; Balkanski, Y.; Boucher, O. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Astrophysics::Earth and Planetary Astrophysics
The assessment of the climatic effects of an aerosol with a large variability like mineral dust requires some approximations whose validity is investigated in this paper. Calculations of direct radiative forcing by mineral dust (short-wave, long-wave and net) are performed with a single-column radiation model for two standard cases in clear sky condition: a desert case and an oceanic case. Surface forcing result from a large diminution of the short-wave fluxes and of the increase in down-welling long-wave fluxes. Top of the atmosphere (TOA) forcing is negative when short-wave backscattering dominates, for instance above the ocean, and positive when short-wave or long-wave absorption dominates, which occurs above deserts. We study here the sensitivity of these mineral forcings to different treatments of the aerosol complex refractive index and size distribution. We also describe the importance of the dust vertical profile, ground temperature, emissivity and albedo. Among these parameters, the aerosol complex refractive index has been identified as a critical parameter given the paucity and the incertitude associated with it. Furthermore, the imaginary part of the refractive index is inadequate if spectrally averaged. Its natural variability (linked to mineralogical characteristics) lead to variations of up to ± 40% in aerosol forcing calculations. A proper representation of the size distribution when modelling mineral aerosols is required since dust optical properties are very sensitive to the presence of small particles. In addition we demonstrate that LW forcing imply a non-negligible sensitivity to the vertical profiles of temperature and dust, the latter being an important constraint for dust effect calculations.DOI: 10.1034/j.1600-0889.1998.t01-2-00007.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ackerman, S. and Chung, H. 1992. Radiative eVect of airborne dust on regional energy budgets at the top of the atmosphere. J. Appl. Meteo. 31, 223-233.
    • Boucher, O. and Anderson, T. L. 1995. GCM assessment of the sensitivity of direct climate forcing by anthropogenic sulfate aerosols to aerosol size and chemistry. J. Geophys. Res. 100, 26117-26134.
    • Boucher, O., Schwartz, S. E., Ackerman, T. P., Anderson, T. L., Bergstrom, B., Bonnel, B., Chy´lek, P., Dahlback, A., Fouquart, Y., Fu, Q., Halthore, R. N., Haywood, J. M., Iversen., T., Kato, S., Kinne, S., Kirkeva˚g, A., Knapp, E., Lacis, A., Laszlo, I., Mishchenko, M. I., Nemesure, S., Ramaswamy, V., Roberts, D. L., Russel, P., Schlesinger, M. E., Stephens, G. L., Wagener, R., Wang, M., Wong, J. and Yang, F. 1998. Intercomparison of models representing short-wave radiative forcing by sulfate aerosols. J. Geophys. Res., in press.
    • Cabot, F. 1995. Estimation de l'albe´do de surface a` l'e´chelle globale a` l'aide de mesures satellitaires. The`se d'universite´, Universite´ d'Orsay Paris Sud.
    • Carlson, T. B. and Benjamin, S. G. 1980. Radiative heating rates for Sahara dust. J. Atmos. Sci. 37, 193-213.
    • Cautenet, G., Legrand, M., Cautenet, S., Bonnel, B. and Brogniez, G. 1992. Thermal impact of Saharan dust over land. Part I: simulation. J. Appl. Meteo. 31, 166-180.
    • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E. and Hofmann, D. J. 1992. Climate forcing by anthropogenic aerosols. Science 255, 423-430.
    • Coakley, J. A., Cess, R. D. and Yurevich, F. B. 1983. The eVect of tropospheric aerosols on the Earth's radiation budget. A parameterization for climate models. J. Atmos. Sci. 40, 116-138.
    • D'Almeida, G. A. 1987. On the variability of desert aerosol radiative characteristics. J. Geophys. Res 92, 3017-3026.
    • Dulac, F., Tanre´, D., Bergametti, G., Buat-Me´nard, P., Desbois, M. and Sutton, D. 1992. Assessment of the African airborne dust mass over the Western Mediterranean Sea using Meteosat data. J. Geophys. Res. 97, 2489-2506.
    • Fouquart, Y. and Bonnel, B. 1980. Computations of solar heating of the Earth's atmosphere. A new parameterization. Beitr. Phys. Atmos. 53, 35-62.
    • Fouquart, Y., Bonnel, B., Roquai, M. C., Santer, R. and Cerf, A. 1987. Observations of Saharan aerosols. Results of ECLATS field experiment. Part I. Optical thicknesses and aerosol size distributions. J. Clim. Appli. Meteor. 26, 28-37.
    • Gomes, L., Bergametti, G., Coude´-Gaussen, G. and Rognon, P. 1990. Submicron desert dusts. A sandblasting process. J. Geophys. Res 95, 13929-13935.
    • Grams, G. W., BliVord, I. H., Gillette, D. A. and Russel, P. B. 1974. Complex index of refraction of airborne soil particles. J. Appl. Meteo. 13, 459-471.
    • Hansen, J. E. and Travis, L. D. 1974. Light scattering in planetary atmospheres. Space Sci. Rev. 16, 527-610.
    • Haywood, J. M. and Shine, K. P. 1995. The eVect of anthropogenic sulphate and soot aerosol on the clear sky radiation budget. Geophys. Res. L ett. 22, 603-606.
    • Husar, R. B., Prospero, J. M. and Stowe, J. M. 1997. Characterization of the tropospheric aerosols over the oceans with the NOAA Advanced Very High Radiometer optcial thickness operational product. J. Geophys. Res. 102, 16889-16910.
    • IPCC1995. Summary for policymakers. Cambridge University Press.
    • Ivlev, L. S. and Popova, S. I. 1973. The complex refractive indices of substances in the atmospheric-aerosol dispersed phase. Izv. Atmosph. and Ocean. Phys. 10, 1034-1043.
    • Kiehl, J. T. and Briegleb, B. P. 1993. The relative role of sulfate aerosols and greenhouse gases in climate forcing. Science 260, 311-314.
    • Legrand, M., Cautenet, G. and Buriez, J. C. 1992. Thermal impact of Saharan dust over land. Part II. Application to satellite IR remote sensing. J. Appl. Met. 31, 181-193.
    • Levin, Z. and Lindberg, J. D. 1979. Size distribution, chemical composition and optical properties of urban and desert aerosols in Israel. J. Geophys. Res. 84, 6941-6950.
    • Linberg, J. D. and Gillepsie, J. B. 1977. Relationship between particle size and imaginary refractive index in atmospheric dust. Appl. Optics 16, 2628-2630.
    • Mishchenko, M. I., Lacis, A. A., Carlson, B. E. and Travis, L. D. 1995. Non-sphericity of dust like tropospheric aerosol. Implications for aerosol remote sensing and climate modelling. Geophys. Res. L ett. 22, 1077-1080.
    • Morcrette, J. J. 1989. T echnical memorandum 165: Description of the radiation scheme in the ECMW F model. ECMWF, Reading, U.K.
    • Moulin, C., Dulac, F., Lambert, C. E., Chazette, P., Jankowiak, I., Chatenet, B. and Lavenu, F. 1997. Long term daily monitoring of Saharan dust load over marine areas using meteosat ISCCP-B2 data (2). Accuracy of the method and validation using sun photometers measurements. J. Geophys. Res. 102, 16959-16968.
    • Patterson, E. M. 1981. Optical properties of the crustal aerosol. Relation to chemical and physical characteristics. J. Geophys. Res. 86, 3236-3236.
    • Payne, R. E. 1972. Albedo of the sea surface. J. Atmos. Sci. 29, 959-970.
    • Penner, J. E., Dickinson, R. E. and O'Neill, C. A. 1992. EVects of aerosol from biomass burning on the global radiation budget. Science 256, 1432-1434.
    • Riehl, H. 1954. T ropical meteorology. McGraw-Hill.
    • Schulz, M., Balkanski, Y., Dulac, F. and Guelle, W. 1998. Treatment of aerosol size distribution in a global transport model: validation with satellite-derived observations for a Saharan dust episode. J. Geophys. Res. 103, 10579-10592.
    • Sch u¨tz, L. 1979. Sahara dust transport over the North Atlantic Ocean. Model calculations and measurements. In: Saharan dust, pp. 267-277. John Wiley.
    • Sch u¨tz, L. 1980. Long range transport of desert dust with special emphasis on the sahara. Ann. N. Y. Acad. Sci. 338, 15-20.
    • Schwartz, S. E. 1996. The whitehouse eVect. Shortwave radiative forcing of climate by anthropogenic aerosols. An overview. J. Aer. Sci. 27, 359-382.
    • Shettle, E. P. 1984. Optical and radiative properties of a desert aerosol model. In Proceedings of the Symposium on Radiation in the atmosphere, edited by G. Fiocco, pp. 74-77. A. Deepak, Hampton, Va.
    • Sokolik, I., Andronova, A. and Johnson, T. C. 1993. Complex refractive index of atmospheric dust aerosols. Atmos. Env. 27A, 2495-2502.
    • Sokolik, I. and Golitsyn, G. 1993. Investigation of optical and radiative properties of atmospheric dust aerosols. Atmos. Env. 27A, 2509-2517.
    • Sokolik, I. N. and Toon, O. B. 1996. Direct radiative forcing by anthropogenic airborne mineral aerosol. Nature 381, 681-683.
    • Sokolik, I. N., Toon, O. B. and Bergstr o¨m, R. W. (1998). Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelength. J. Geophys. Res. 103, 8813-8826.
    • Swap, R., Garstang, M., Greco, S., Talbot, R. and Gac, J. Y. 1992. Sahara dust in the Amazon bassin. T ellus 44B, 133-149.
    • Tanre´, D., Devaux, C., Herman, M., Santer, R. and Gac, J. Y.1988. Radiative properties of desert aerosols by optical ground based measurements at solar wavelengths. J. Geophys. Res. 93, 14223-14231.
    • Tegen, I. and Lacis, A. A. 1996. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. 101, 19237-19244.
    • Tegen, I., Lacis, A. A. and Fung, I. 1996. The influence of mineral aerosols from disturbed soils on the global radiation budget. Nature 380, 419-422.
    • Toon, O. B., Pollack, J. B. and Sagan, C. 1977. Physical properties of the particles composing the martian dust storm of 1971-1972. Icarus 30, 663-696.
    • Twomey, S. A., Piepgrass, M. and Wolfe, T. 1984. An assessment of the impact of pollution on global cloud albedo. T ellus 36B, 243-249.
    • Volz, F. E. 1973. Infrared optical constants of ammonium sulfate, Sahara dust, volcanic pumice and flyash. Appl. Optics 12, 564-568.
    • Weare, B. C., Temkis, R. L. and Snell, F. M. 1974. Aerosol and climate: some further modifications. Science 186, 827-828.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from