LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Arzel, Olivier; De Verdière, Alain Colin; Huck, Thierry (2007)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Physics::Atmospheric and Oceanic Physics, Physics::Geophysics
Interdecadal oscillations are analysed in a coupled ocean–atmosphere model made of a planetary geostrophic ocean model within an idealized geometry, coupled to a zonally-averaged tropospheric atmosphere model. The interdecadal variability that arises spontaneously in this coupled system is caused by intrinsic ocean dynamics, the coupled air-sea feedbacks being not essential. The spatial pattern of the variability bears some resemblance with observations and results obtained with atmosphere-ocean general circulation models (AOGCMs) as well as simpler climate models: large and quasi-stationary upper ocean temperature-dominated density anomalies are found in the north-western part of the ocean basin along with weaker, westward propagating anomalies in the remaining interior. The basic physical mechanism that lies at the heart of the existence of the interdecadal mode is a large-scale baroclinic instability of the oceanic mean flow in the vicinity of the western boundary, characteristic of ocean models forced by constant surface fluxes. Freshwater feedbacks associated with the hydrological cycle are found to have only a modest influence on the interdecadal mode. The presence of a periodic channel mimicking the Antarctic Circumpolar Current at high southern latitudes prevents the oceanic baroclinic instability to occur in the Southern Hemisphere.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arzel, O. 2004. Me´canismes de variabilite´ climatique interde´cennale dans des mode`les idealise´s, The`se de doctorat de l'Universite´ de Bretagne Occidentale, 242 pages, Brest, France.
    • Arzel, O., Huck, T. and Colin de Verdie`re, A. 2006. The different nature of the interdecadal variability of the thermohaline circulation under mixed and flux boundary conditions. J. Phys. Oceanogr. 36, 703- 1718.
    • Branscome, L. E. 1983. A parameterization of transient eddy heat flux on a beta-plane. J. Atmos. Sci. 40, 2508-2521.
    • Chen, F. and Ghil, M. 1995. Interdecadal variability of the thermohaline circulation and high-latitude surface fluxes. J. Phys. Oceanogr. 25, 2547-2568.
    • Chen, F. and Ghil, M. 1996. Interdecadal variability in a hybrid coupled ocean-atmosphere model. J. Phys. Oceanogr. 26, 1561-1578.
    • Colin de Verdie`re, A. 1988. Buoyancy driven planetary flows. J. Mar. Res. 46, 215-265.
    • Colin de Verdie`re, A. and Huck, T. 1999. Baroclinic instability: an oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr. 29, 893-910.
    • Delworth, T. L. and Greatbatch, R. J. 2000. Multidecadal thermohaline circulation variability excited by atmospheric surface flux forcing. J. Clim. 13, 1481-1495.
    • Delworth, T. L. and Mann, M. E. 2000. Observed and simulated multidecadal variability in the northern hemisphere. Clim. Dyn. 16, 661- 676.
    • Delworth, T. L., Manabe, S. and Stouffer, R. J. 1993. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J. Clim. 6, 1993-2011.
    • Deser, C. and Blackmon, M. L. 1993. Surface climate variations over the north Atlantic during winter: 1900-1989. J. Clim. 6, 1743-1753.
    • Dijkstra, H. A. and Molemaker, M. J. 1997. Symmetry breaking and overturning oscillations in thermohaline-driven flows. J. Fluid. Mech. 331, 169-198.
    • Dong, B. and Sutton, R. T. 2005. Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J. Clim. 18, 1117-1135.
    • Genthon, C., Le Treut, H., Jouzel, J. and Sadourny, R. 1990. Parametrization of eddy sensible heat transports in a zonally averaged dynamic model of the atmosphere. J. Atmos. Sci. 47, 2475-2487.
    • Gray, S. T., Graumlich, L. J., Betancourt, J. L. and Pederson, G. T. 2004. A tree-ring based reconstruction of the Atlantic Multidecadal Oscillation since 1567 AD. Geophys. Res. Lett. 31, doi:10.1029/2004GL019932
    • Green, J. S. A., 1970. Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quart. J. Roy. Meteorol. Soc. 96, 157-185.
    • Greatbatch, R. J. and Zhang, S. 1995. An interdecadal oscillation in an idealized ocean basin forced by constant heat flux. J. Clim. 8, 81-91.
    • Hakkinen, S. 2000. Decadal air-sea interaction in the North Atlantic based on observations and modeling results. J. Clim. 13, 1195-1219.
    • Hansen, D. V. and Bezdek, H. F. 1996. On the nature of decadal anomalies in North Atlantic sea surface temperature. J. Geophys. Res. 101, 8749- 8758.
    • Hougthon, J. T. and co-authors, 2001. IPCC 2001: Climate Change 2001: The scientific basis, Contribution of Working Group 1 to the third assessment report of Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, 881 pp.
    • Huck, T., Colin de Verdie`re, A. and Weaver, A. 1999. Interdecadal variability of the thermohaline circulation in box-ocean models forced by fixed surface fluxes. J. Phys. Oceanogr. 29, 865-892.
    • Huck, T., Vallis, G. and Colin de Verdie`re, A. 2001. On the robustness of the interdecadal modes of the thermohaline circulation. J. Clim 14, 940-963.
    • Kravtsov, S. and Ghil, M. 2004. Interdecadal variability in a hybrid coupled ocean-atmosphere model. J. Phys. Oceanogr. 34, 1756-1775.
    • Kushnir, Y. 1994. Interdecadal variations in north Atlantic sea surface temperature and associated atmospheric conditions. J. Clim. 7, 141- 157.
    • Ledwell, J. R., Watson, A. J. and Law, C. S. 1993. Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment. Nature 364, 701-703.
    • Levitus, S. 1989. Interpendatal variability of temperature and salinity of intermediate depths of the north Atlantic ocean, 1970-1974 versus 1955-1959. J. Geophys. Res. 94, 6091-6131.
    • McCracken, M. C. and Ghan, S. J. 1988. Design and use of zonally averaged models. In: Physically-Based Modeling and Simulation of Climate and Climate change, Part II (ed. M. E. Schlesinger), Riedel, 755-809.
    • Manabe, S., Smagorinsky, J. and Strickler, R. F. 1965. Simulated climatology of a general circulation model with a hydrological cycle. Monthly Weather Rev. 93, 769-798.
    • Mann, M. E., Bradley, R. S. and Hugues, M. K. 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392, 779-787.
    • Munk, W. 1996. Abyssal recipes. Deep-Sea Res 13, 707-730.
    • Munk, W. and Wunsch, C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res. 45, 1977-2010.
    • Ollitrault, M. and Colin de Verdie`re, A. 2002. SOFAR floats reveal midlatitude intermediate North Atlantic general circulation. Part II: an Eulerian Statistical View. J. Phys. Oceanogr. 32, 2034-2053.
    • Peixoto, J. P. and Oort, A. H. 1992. Physics of Climate. American Institute of Physics, New York, 520pp.
    • Quon, C. and Ghil, M. 1992. Multiple equilibria in thermosolutal convection due to salt-flux boundary conditions. J. Fluid. Mech. 245, 449-484.
    • Reverdin, G., Cayan, D. and Kushnir, Y. 1997. Decadal variability of hydrography in the upper northern north Atlantic in 1948-1990. J. Geophys. Res. 102, 8505-8531.
    • Salmon, R. 1986. A simplified linear ocean circulation theory. J. Mar. Res. 44, 695-711.
    • Saravanan, R. and McWilliams, J. C. 1995. Multiple equilibria, natural variability, and climate transitions in an idealized ocean-atmosphere model. J. Clim. 8, 2296-2323.
    • Saravanan, R., Danabasolglu, G. and Doney, S. C., McWilliams, J. C. 2000. Decadal variability and predictability in the midlatitude oceanatmosphere system. J. Clim. 13, 1073-1097.
    • Schlesinger, M. E. and Ramankutty, N. 1994. An oscillation in the global climate system of period 65-70 years. Nature 367, 723-726.
    • Stone, P. H. 1972. A simplified radiative-dynamical model for the static stability of rotating atmospheres. J. Atmos. Sci. 29, 405-418.
    • Stone, P. H. and Yao, M. S. 1987. Development of two-dimensional zonally averaged statistical-dynamical model. Part II: the role of eddy momentum fluxes in the general circulation and their parameterization. J. Atmos. Sci. 44, 3769-3786.
    • Stone, P. H. and Yao, M. S. 1990. Development of two-dimensional zonally averaged statistical-dynamical model. Part III: the parametrization of the eddy fluxes of heat and moisture. J. Clim. 3, 726-740.
    • te Raa, L. A. and Dijkstra, H. A. 2002. Instability of the thermohaline circulation on interdecadal timescales. J. Phys. Oceanogr. 32, 138- 160.
    • te Raa, L. A., Gerrits, J. and Dijkstra, H. A. 2004. Identification of the mechanism of interdecadal variability in the North Atlantic Ocean. J. Phys. Oceanogr. 34, 2792-2807.
    • Thual, O. and McWilliams, J. C. 1992. The catastrophe structure of thermohaline convection in a two-dimensional fluid model and a comparison with low-order box models. Geophys. Astrophys. Fluid. Dyn. 64, 67-95.
    • Timmermann, A. and Latif, M. 1998. Northern hemispheric interdecadal variability: a coupled air-sea mode. J. Clim. 11, 1906-1931.
    • Toggweiler, J. R. and Samuels, B. 1995. Effect of Drake Passage on the global thermohaline circulation. Deep-Sea Res. 42, 477-500.
    • Trenberth, K. E. and Caron, J. M. 2001. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 14, 3433-3443.
    • Vallis, G. K. 1982. A statistical-dynamical climate model with a simple hydrological cycle. Tellus 34, 211-227.
    • Vellinga, M. and Wu, P. 2004. Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J. Clim. 17, 4498-4511.
    • Weaver, A. J. and Sarachik, E. S. 1991a. The role of mixed boundary conditions in numerical models of the ocean's climate. J. Phys. Oceanogr. 21, 1470-1493.
    • Weaver, A. J. and Sarachik, E. S. 1991b. Evidence for decadal variability in an ocean general circulation model: an advective mechanism. Atmos. Ocean 29, 197-231.
    • Weaver, A. J. and Valcke, S. 1998. On the variability of the thermohaline circulation in the GFDL coupled model. J. Clim. 11, 759- 767.
    • Weaver, A. J., Sarachik, E. S. and Marotzke, J. 1991. Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature 353, 836-838.
    • Weaver, A. J., Marotzke, J., Cummins, P. F. and Sarachik, E. S. 1993. Stability and variability of the thermohaline circulation. J. Phys. Oceanogr. 23, 39-60.
    • Winton, M. 1997. The damping effect of bottom topography on internal decadal-scale oscillations of the thermohaline circulation. J. Phys. Oceanogr. 27, 203-208.
    • Winton, M. and Sarachik, E. S. 1993. Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J. Phys. Oceanogr. 23, 1713-1724.
    • Yang, J. and Neelin, J. D. 1993. Sea-ice interaction with the thermohaline circulation. Geophys. Res. Lett. 20, 217-220.
    • Yang, J. and Neelin, J. D. 1997. Decadal variability in coupled sea-ice thermohaline circulation systems. J. Clim. 10, 3059-3076.
    • Yao, M. S. and Stone, P. H. 1987. Development of a two-dimensional zonally averaged statistical-dynamical model. Part I: the parametrization of moist convection and its role in the general circulation. J. Atmos. Sci. 44, 65-82.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from