LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bjerhammar, Arne (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Solutions of the discrete boundary value problem of physical geodesy are discussed. Dirac impulses, Wiener–Hopf predictions and “reflexive predictions” are compared. The dramatic computational gains with “reflexive filtering” are discussed.DOI: 10.1111/j.2153-3490.1975.tb01663.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bjerhammar, A. 1962. Gravity reduction t o a spherical surface. Royal Institute of Technology, Geodesy Division, Stockholm.
    • Bjerhammar, A. 1963. A new theory of gravimetric geodesy. Royal Institute of Technology, Geodesy Division, Stockholm.
    • Bjerhammar, A. 1963. Gravimetric geodesy free of density estimates through analysis of discrete gravity data. Gimrada, Fort Belvoir.
    • Bjerhammar, A. 1964. A new theory of geodetic gravity. Royal Institute of Technology, Geodesy Division, Stockholm.
    • Bjerhammar, A. 1965. The space geoid. Royal Institute of Technology, Geodesy Division, Stockholm, April-May.
    • Bjerhammar, A. 1968. A generalized matrix algebra. Royal Institute of Technology. Geodesy Division, Stockholm,
    • Bjerhammar, A. 1968. On gravity. Royal Institute of Technology, Geodesy Division, Stockholm.
    • Bjerhammar, A. 1969. Theory of a new geoid. Bulletin Geodesique.
    • Bjerhammar, A. 1969. On the boundary value problem of physical geodesy. Tellus.
    • Bjerhammar, A. 1973. Theory of errors and generalized matrix inverses. Elsevier, Amsterdam.
    • Brovar, V. V. 1963. Solutions of the Molodensky boundary problem. English translation of the Ruisian Journal Geodesy and Aerophotography.
    • Chowitz. H. B. 1972. Downward continuation of the potential from satellite altitudes. Fifth Symposium on Mathematical Geodesy, Florence.
    • Deny, J. 1949. Systemes totaux de fonctions harmoniques. Annales de l'institut Fourier.
    • Grafarend, E. 1973. Ueodetic stochastic processes. Lecture Notes, International Summer School in the Mountains. Ramsau (in press).
    • Groten, E. 1970. Some remarks on downward continuation of gravity. Advances in Oravimetry. Pittsburgh.
    • Heiskanen, W. & Moritz, H. 1967. Physical geodesy.
    • Heitz, S . & Tscherning, C. C. 1971. Comparisions of two methods of astrogeodetic geoid determinations based on least aquares prediction and collocation.
    • Hotine, M. 1969. Mathematical geodesy. Essa, Washington.
    • Kaula, W. M. 1962. Determination of the earth's gravitational field. Reviews of Ueophysiw, 1963.
    • Keldych, M. & Lavrentieff, M. 1937. Compte rendue. Paris.
    • Krarup, T. 1969. A contribution to the mathematical foundation of physical geodesy. Geodetisk Institut, Copenhagen.
    • Krarup, T. 1973. On potential theory (Report No. 6), Geodetisk Institut, Copenhagen.
    • Lauritzen, S. L. 1973. The probabilistic background of some statistical methods ira physical geodesy. Geodetisk Institut, Copenhagen.
    • Marych, M. I. 1969. On the question of reducing t o a Taylor series the formula that determines the figure of the earth (in Russian). Ueodesy, Cartography and Aerophotography.
    • Marych, M. I. 1969. On the second approzimation of M . S. Moloo!ensky for the disturbing potential (in Russian).
    • Meissl, P. 1971. A study of covariance functions related to the earth's disturbing potential. Columbus, Ohio.
    • Meschkowski, H. 1962. Hilbertsche Raume mit Kernfunktionen. Springer, Berlin.
    • Molodensky, M. S. 1948. The external gravitational field of the figure of the earth. Publ. Acad. Science, Geogr. and Geophys., Moscow.
    • Molodensky, M . 8.1962. Methods for study of the ezternal gravitational field and figure of the earth. Israel Program for Scientific Translations, Jerusalem.
    • Moritz, H. 1964. The boundary value problem of physical geodesy. No. 46, Ohio.
    • Moritz, H. 1969. Nonlinear solutions of the geodeticboundary-value problem. N o . 126, Ohio.
    • Moritz, H. 1972. Convergence of the Molodensky's series. No. 183. Ohio.
    • Moritz, H. & Schwarz, K. P. 1972. On the computation of spherical harmonics from satellite observations. Fifth Symposium on Mathematical Geodesy, Florence.
    • Moritz, H. 1972. Advanced least sqwrea methods. No. 175, Ohio.
    • Morrison, F. 1966. Validity of the expansion for potential near the surface of the earth. AGU.
    • Pick, M. 1965. On the shape of the earth by using analytical continuation of function. Studia geoph. et geod. 9.
    • Reit, B. G. 1967. On the numerical solution of the gravimetrical integral equation of Bjerhammar. Royal Institute of Technology, Geodesy Division. Stockholm.
    • Tscherning, C. C. 1973. Determination of a local approximation to the anomalous potential of the earth using “exact” astrogravimetric collocation. Lecture Notes, Ramsau.
    • Tscherning, C. C. 1973. Problems and results in least squares collocation. Department of Geodetic Science, Columbus, Ohio.
    • Tscherning, C. C. 1973. On the relation between the variation of the degree-variances and the variation of the anomalous potential. Bull. Geod. Sc. Aff. XXXII.No. 3.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from