Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sasakawa, M.; Shimoyama, K.; Machida, T.; Tsuda, N.; Suto, H.; Arshinov, M.; Davydov, D.; Fofonov, A.; Krasnov, O.; Saeki, T.; Koyama, Y.; Maksyutov, S. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We have been conducting continuous measurements of Methane (CH4) concentration from an expanding network of towers (JR-STATION: Japan–Russia Siberian Tall Tower Inland Observation Network) located in taiga, steppe and wetland biomes of Siberia since 2004. High daytime means (>2000 ppb) observed simultaneously at several towers during winter, together with in situ weather data and NCEP/NCAR reanalysis data, indicate that high pressure systems caused CH4 accumulation at subcontinental scale due to the widespread formation of an inversion layer. Daytime means sometimes exceeded 2000 ppb, particularly in the summer of 2007 when temperature and precipitation rates were anomalously high over West Siberia, which implies that CH4 emission from wetlands were exceptionally high in 2007. Many hot spots detected by MODIS in the summer of 2007 illustrate that the contribution of biomass burning also cannot be neglected. Daytime mean CH4 concentrations from the Siberian tower sites were generally higher than CH4 values reported at NOAA coastal sites in the same latitudinal zone, and the difference in concentrations between two sets of sites was reproduced with a coupled Eulerian–Lagrangian transport model. Simulations of emissions from different CH4 sources suggested that the major contributor to variation switched from wetlands during summer to fossil fuel during winter.DOI: 10.1111/j.1600-0889.2010.00494.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. and coauthors. 2003. The version 2 global precipitation climatology project (GCPC) monthly precipitation analysis (1979-present). J. Hydrometeor 4, 1147-1167.
    • Bergamaschi, P., Brenninkmeijer, C., Hahn, M., Ro¨ckmann, T., Scharffe, D. and co-authors. 1998. Isotope analysis based source identification for atmospheric CH4 and CO sampled across Russia using the TransSiberian railroad. J. Geophys. Res. 103, 8227-8235.
    • Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A. and co-authors. 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439-443.
    • Dlugokencky, E.J., Houweling, S., Bruhwiler, L., Masarie, K.A., Lang, P.M. and co-authors. 2003. Atmospheric methane levels off: temporary pause or a new steady-state?. Geophys. Res. Lett. 30, doi:10.1029/2003GL018126.
    • Dlugokencky, E.J., Bruhwiler, L., White, J.W.C., Emmons, L.K., Novelli, P.C. and co-authors. 2009a. Observational constraints on recent increases in the atmospheric CH4 burden. Geophys. Res. Lett. 36, doi:10.1029/2009GL039780.
    • Dlugokencky, E.J., Lang, P.M. and Masarie, K.A. 2009b. Atmospheric methane dry air mole fractions from the NOAA ESRL carbon cycle cooperative global air sampling network, 1983-2008, Version: 2009-06- 18. Available at: ftp://ftp.cmdl.noaa.gov/ccg/ch4/flask/event/.
    • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M. and co-authors. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96, 13033-13065.
    • Gedney, N., Cox, P. and Huntingford, C. 2004. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31, doi: 10.1029/2004GL020919.
    • IPCC 2007. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-editors). Cambridge Univ. Press, New York.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc. 77, 437-470.
    • Khvorostyanov, D.V., Ciais, P., Krinner, G. and Zimov, S.A. 2008. Vulnerability of east Siberia's frozen carbon stores to future warming. Geophys. Res. Lett. 35, doi:10.1029/2008GL033639.
    • Kozlova, E.A., Manning, A.C., Kisilyakhov, Y., Seifert, T. and Heimann, M. 2008. Seasonal, synoptic, and diurnal-scale variability of biogeochemical trace gases and O2 from a 300-m tall tower in central Siberia. Global Biogeochem. Cycles 22, doi:10.1029/2008GB003209.
    • Levin, I., Ciais, P., Langenfelds, R., Schmidt, M., Ramonet, M. and coauthors. 2002. Three years of trace gas observations over the EuroSiberian domain derived from aircraft sampling-a concerted action. Tellus 54B, 696-712.
    • Lloyd, J., Langenfelds, R., Francey, R., Gloor, M., Tchebakova, N. and co-authors. 2002. A trace-gas climatology above Zotino, central Siberia. Tellus 54B, 749-767.
    • Machida, T., Katsumata, K., Tohjima, Y., Watai, T. and Mukai, H. 2009. Preparing and maintaining of CO2 calibration scale in National Institute for Environmental Studies-NIES 95 CO2 scale. In: Report of the 14th WMO meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques (ed. T. Laurila). Helsinki, Finland, September 10-13, 2007, WMO/GAW Report No. 186, 26-29.
    • Maksyutov, S., Patra, P.K., Onishi, R., Saeki, T. and Nakazawa, T. 2008. NIES/FRCGC global tracer transport model: description, validation, and surface sources and sinks inversion. J. Earth Simul. 9, 3-18.
    • Nakazawa, T., Sugawara, S., Inoue, G., Machida, T., Maksyutov, S. and co-authors. 1997. Aircraft measurements of the concentrations of CO2, CH4, N2O, and CO and the carbon and oxygen isotopic ratios of CO2 in the troposphere over Russia. J. Geophys. Res. 102, 3843-3859.
    • National Climatic Data Center 2008. Climate of 2007: Annual report, http://www.ncdc.noaa.gov/oa/climate/research/2007/ann/global.html, NOAA, Asheville, N.C.
    • Olivier, J.G.G. and Berdowski, J.J.M. 2001. Global emissions sources and sinks. In: The Climate System (eds J. Berdowski, R. Guicherit and B.J. Heij). A.A. Balkema Publishers/Swets & Zeitlinger Pub, Lesse, The Netherlands, 33-78.
    • Paris, J.D., Stohl, A., Nedelec, P., Arshinov, M.Y., Panchenko, M.V. and co-authors. 2009. Wildfire smoke in the Siberian Arctic in summer: source characterization and plume evolution from airborne measurements. Atmos. Chem. Phys. 9, 9315-9327.
    • Patra, P.K., Takigawa, M., Ishijima, K., Choi, B.-C., Cunnold, D. and coauthors. 2009. Growth Rate, Seasonal, Synoptic, Diurnal Variations and Budget of Methane in the Lower Atmosphere. J. Meteorol. Soc. Japan 87, 635-663.
    • Randerson, J. T., G. R. Van Der Werf, L. Giglio, G. J. Collatz and P. S. Kasibhatla. 2006. Global Fire Emissions Database, Version 2 (GFEDv2). Data set. Available at: http://daac.ornl.gov/, from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, U.S.A. doi:10.3334/ORNLDAAC/834.
    • Rigby, M., Prinn, R.G., Fraser, P.J., Simmonds, P.G., Langenfelds, R.L. and co-authors. 2008. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, doi:10.1029/2008GL036037.
    • Seibert, P. and Frank, A. 2004. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 4, 51-63.
    • Sohngen, B., Andrasko, K., Gytarsky, M., Korovin, G., Laestadius, L. and co-authors. 2005. Carbon Inventory and Mitigation Potential of the Russian Forest and Land Base (ed. S. Barrell). World Resour. Inst., Washington, DC.
    • Spivakovsky, C., Logan, J., Montzka, S., Balkanski, Y., ForemanFowler, M. and co-authors. 2000. Three-dimensional climatological distribution of tropospheric OH: Update and evaluation. J. Geophys. Res. 105, 8931-8980.
    • Stohl, A., Hittenberger, M. and Wotawa, G. 1998. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ. 32, 4245-4264.
    • Sugawara, S., Nakazawa, T., Inoue, G., Machida, T., Mukai, H. and co-authors. 1996. Aircraft measurements of the stable carbon isotopic ratio of atmospheric methane over Siberia. Global Biogeochem. Cycles 10, 223-231.
    • Suto, H. and Inoue, G. 2010. A new portable instrument for in-situ measurement of atmospheric methane mole fraction by applying an improved tin-dioxide based gas sensor. J. Atmos. Ocean. Tech. doi:10.1175/2010JTECHA1400.1.
    • Tanimoto, H., Sato, K., Butler, T., Lawrence, M.G., Fisher, J.A. and coauthors. 2009. Exploring CO pollution episodes observed at Rishiri Island by chemical weather simulations and AIRS satellite measurements: long-range transport of burning plumes and implications for emissions inventories. Tellus 61B, 394-407.
    • Tarasova, O.A., Brenninkmeijer, C.A.M., Assono, S.S., Elansky, N.F., Ro¨ckmann, T. and co-authors. 2006. Atmospheric CH4 along the Trans-Siberian railroad (TROICA) and river Ob: Source identification using stable isotope analysis. Atmos. Environ. 40, 5617-5628.
    • Thoning, K., Tans, P. and Komhyr, W. 1989. Atmospheric Carbon dioxide at Mauna Loa Observatory 2. Analysis of the NOAA GMCC data, 1974-1985. J. Geophys. Res. 94, 8549-8565.
    • Tohjima, Y., Maksyutov, S., Machida, T. and Inoue, G. 1996. Airborne measurements of atmospheric methane over oil fields in western Siberia. Geophys. Res. Lett. 23, 1621-1624.
    • Tohjima, Y., Wakita, H., Maksyutov, S., Machida, T., Inoue, G. and coauthors. 1997. Distribution of tropospheric methane over Siberia in July 1993. J. Geophys. Res. 102, 25371-25382.
    • Tohjima, Y., Mukai, H., Hashimoto, S., Patra, P.K. 2010. Increasing synoptic scale variability in atmospheric CO2 at Hateruma Island associated with increasing East-Asian emissions. Atmos. Chem. Phys., 10, 453-462.
    • Walter, K.M., Zimov, S.A., Chanton, J.P., Verbyla, D. and Chapin, F.S.I. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71-75.
    • Warneke, C., Bahreini, R., Brioude, J., Brock, C.A., de Gouw, J.A. and co-authors. 2009. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett. 36, doi:10.1029/2008GL036194.
    • Watai, T., Machida, T., Shimoyama, K., Krasnov, O., Yamamoto, M. and co-authors. 2010. Development of atmospheric carbon dioxide standard gas saving system and its application to a measurement at a site in West Siberian forest. J. Atmos. Ocean. Tech. 27, 843- 855.
    • Yamada, K., Yoshida, N., Nakagawa, F. and Inoue, G. 2005. Source evaluation of atmospheric methane over western Siberia using double stable isotopic signatures. Org. Geochem. 36, 717-726.
    • Zhou, L.X., Kitzis, D. and Tans, P.P. 2009. Report of the fourth WMO round-robin reference gas intercomparison, 2002-2007. In: Report of the 14th WMO meeting of Experts on Carbon Dioxide Concentration and Related Tracer Measurement Techniques (ed. T. Laurila). Helsinki, Finland, September 10-13, 2007, WMO/GAW Report No. 186, 40-43.
    • Zimov, S., Schuur, E. and Chapin, F. 2006. Permafrost and the global carbon budget. Science 312, 1612-1613.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article

Collected from