Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lloyd, Jon; Shibistova, Olga; Zolotoukhine, Daniil; Kolle, Olaf; Arneth, Almut; Wirth, Christian; Styles, Julie M.; Tchebakova, N. M.; Schulze, E.-Detlef (2002)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We present a first analysis of data (June 1998 to December 2000) from the long-term eddy covariance site established in a Pinus sylvestris stand near Zotino in central Siberia as part of the EUROSIBERIAN CARBONFLUX project. As well as examining seasonal patterns in net ecosystem exchange (NE), daily, seasonal and annual estimates of the canopy photosynthesis (or gross primary productivity, GP) were obtained using NE and ecosystem respiration measurements.Although the forest was a small (but significant) source of CO2 throughout the snow season (typically mid-October to early May) there was a rapid commencement of photosynthetic capacity shortly following the commencement of above-zero air temperatures in spring: in 1999 the forest went from a quiescent state to significant photosynthetic activity in only a few days. Nevertheless, canopy photosynthetic capacity was observed to continue to increase slowly throughout the summer months for both 1999 and 2000, reaching a maximum capacity in early August. During September there was a marked decline in canopy photosynthesis which was only partially attributable to less favourable environmental conditions. This suggests a reduction in canopy photosynthetic capacity in autumn, perhaps associated with the cold hardening process. For individual time periods the canopy photosynthetic rate was mostly dependent upon incoming photon irradiance. However, reductions in both canopy conductance and overall photosynthetic rate in response to high canopy-to-air vapour differences were clearly evident on hot dry days. The relationship between canopy conductance and photosynthesis was examined using Cowan's notion of optimality in which stomata serve to maximise the marginal evaporative cost of plant carbon gain. The associated Lagrangian multiplier (λ) was surprisingly constant throughout the growing season. Somewhat remarkably, however, its value was markedly different between years, being 416 mol mol−1 in 1999 but 815 mol mol−1 in 2000. Overall the forest was a substantial sink for CO2 in both 1999 and 2000: around 13 mol C m−2 a−1. Data from this experiment, when combined with estimates of net primary productivity from biomass sampling suggest that about 20% of this sink was associated with increasing plant biomass and about 80% with an increase in the litter and soil organic carbon pools. This high implied rate of carbon accumulation in the litter soil organic matter pool seems unsustainable in the long term and is hard to explain on the basis of current knowledge.DOI: 10.1034/j.1600-0889.2002.01487.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arbarskaya, M. K. and Vaganov, E. A. 1997. Long-term variation in fire frequency and radial increment in pine from the middle taiga subzone of central Siberia. Russ. J. Ecol. 28, 291-297.
    • Arneth, A., Lloyd, J., Sˇ antru˚cˇkova´, H., Bird, M. I., Grigoriev, S., Kalaschnikov, Y. N., Gleixner, G. and Schulze, E.-D. 2002. Response of central Siberian Scots pine to soil water deficit and long-term trends in atmospheric CO2 concentration. Global Biogeocheml. Cycles (in press).
    • Baldocchi, D., Valentini, R., Oechel, W. and Dahlman, R. 1996. Strategies for measuring and modelling carbon dioxide and water vapour fluxes over terrestrial ecosystems. Global Change Biol. 2, 159-168.
    • Baldocchi, D. D., Vogel, C. A. and Hall, B. 1997. Seasonal variation of carbon dioxide exchange rates above and below a boreal jack pine forest. Agric. For. Meteorol. 83, 147-170.
    • Baldocchi, D., Falge E., Gu, L. H. and coauthors. 2001. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapour and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415-2434.
    • Bird, M., Sˇ antru˚cˇkova´, H., Arneth, A., Grigoriev, S., Gleixner, G., Kalashnikov, Y. N., Lloyd, J. and Schulze, E.-D. 2002. Soil carbon inventories and carbon-13 on a latitude transect in Siberia. Tellus 54B, this issue.
    • Chen, J. M., Rich, P. M., Gower, S. T., Norman, J. M. and Plummer, S. 1997. Leaf area index of boreal forests: theory, techniques and measurements. J. Geophys. Res. 102, 29429-29443.
    • Ciais, P., Peylin, P. and Bousquet, P. 2000. Regional biospheric carbon fluxes as inferred from atmospheric CO2 measurements. Ecol. Appl. 10, 1574-1589.
    • Cowan, I. R. 1977. Stomatal behavior and environment. Adv. Bot. Res. 4, 117-228.
    • Dang, Q. L., Margolis, H. A., Sy, M., Coyea, M. R., Collatz, G. J. and Walthall, C. L. 1997. Profiles of photosynthetically active radiation, nitrogen and photosynthetic capacity in the boreal forest: Implications for scaling from leaf to canopy. J. Geophys. Res. 102, 28845-28859.
    • Ericsson, A. 1979. Effects of fertilization and irrigation on seasonal changes in carbohydrate reserves in different age classes of needles on 20-year old Scots pine trees (Pinus sylvestris). Physiol. Plant. 45, 270-280.
    • Eugster, W. and Senn, W. 1995. A cospectral correction model for measurements of turbulent NO2 flux. BoundaryLayer Meteorol. 74, 321-340.
    • Fan, S, Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P. 1998. A large terrestrial sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 754-759.
    • Foken T. and Wichura, B. 1996. Tools for quality assessment of surface-based flux measurements. Agric. For. Meteorol. 78, 83-105.
    • Garratt, J. R. 1992. The atmospheric boundary layer. Cambridge University Press, Cambridge.
    • Goulden, M. L., Munger J. W., Fan, S. M., Daube, B. C. and Wofsy, S. C. 1996. Exchange of carbon dioxide by a deciduous forest; Response to interannual climate variability. Science 271, 1576-1578.
    • Goulden, M. L., Wofsy, S. C., Harden, J. W., Trumborne, S. E., Crill, P. M., Gower, S. T., Fries, T., Daube, B. C., Fan, S.-M., Sitton, D. J., Bazzaz, F. A. and Munger, D. W. 1998. Sensitivity of boreal forest carbon balance to soil thaw. Science 279, 214-217.
    • Grace, J., Lloyd, J., Miranda, A. C., Miranda, H. and Gash, J. H. C. 1998. Fluxes of carbon dioxide and water vapour over a C4 pasture in south-western Amazonia (Brazil). Aust. J. Plant Physiol. 25, 519-530.
    • Hari, P., Ma¨kela¨, A., Berninger, F. and Pohja, T. 1999. Field evidence for the optimality hypothesis of gas exchange in plants. Aust. J. Plant Physiol. 26, 239-244.
    • Hollinger, D. Y., Kelliher, F. M., Schulze, E.-D., Bauer, G., Arneth, A., Byers, J. N., Hunt, J. E., McSeveny, T. M., Kobak, K. I., Milyukova, I., Sogachev, A., Tatarinov, F., Varlagin, A., Ziegler, W. and Vygodskaya, N. N. 1998. Forest-atmosphere carbon dioxide exchange in eastern Siberia. Agric. For. Meteorol. 90, 291-306.
    • Janssens, I. A., Lankreijer, H., Matteucci, G. et al. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration rates across European forests. Global Change Biol. 7, 269-278.
    • Jarvis, P. G., Massheder, J. M., Hale, S. E., Moncreiff, J. B., Rayment, M. and Scott, S. L. 1997. Seasonal variation of carbon dioxide, water vapour and energy exchanges of a boreal black spruce forest. J. Geophys. Res. 102, 28953- 28966.
    • Kaminski, T., Heimann, M. and Giering, R. 1999. A coarse grid three-dimensional global inverse model of the atmospheric transport-2. Inversion of the transport of CO2 in the 1980s. J. Geophys. Res. 104, 18555- 18581.
    • Kelliher, F. M., Lloyd, J., Arneth, A., Luhker, B., Byers, J. N., McSeveny, T. M., Milukova, I., Grigoriev, S., Panfyorov, M., Sogatcev, A., Varlagin, A., Ziegler, W., Bauer, G., Wong, S.-c. and Schulze, E.-D. 1999. Carbon dioxide efflux density from the floor of a central Siberian forest. Agric. For. Meteorol. 94, 217-232.
    • Kelliher, F. M., Lloyd, J., Baldocchi, D. D., Rebmann, C., Wirth, C. and Schulze, E.-D. 2001. Evaporation in the boreal zone: Physics, vegetation and climate. In: Global biogeochemical cycles in the climate system (eds. E.-D. Schulze, S. P. Harrison, M. Heimann, E. A. Holland, J. Lloyd, I. C. Prentice and D. Schimel). Academic Press, New York,151-175.
    • Kossmann, J. and Lloyd, J. 2000. Understanding and influencing starch biochemistry. Crit. Rev. Plant Sci. 19, 171- 226.
    • Krivosheeva, A. Tai, D.-L., Ottander, C., Wingsle, G., Dube, S. K. and O¨quist, G. 1996. Cold acclimation and photoinhibition of photosynthesis in Scots pine. Planta 200, 296- 305.
    • Lindroth, A., Grelle, A. and More´n, A.-S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol. 4, 443-450.
    • Lloyd, J. 1991. Modelling stomatal response of Macadamia integrifolia. Austr. J. Plant Physiol. 18, 549-660.
    • Lloyd, J. 1999a. Current perspectives on the terrestrial carbon cycle. Tellus 51B, 336-342.
    • Lloyd, J. 1999b. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interactions with soil nutrient status II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Funct. Ecol. 13, 439-459.
    • Lloyd, J. and Farquhar, G. D. 1994. 13C discrimination during photosynthetic CO2 assimilation by the terrestrial biosphere. Oecologia 99, 201-215.
    • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with plant nutrient status. Funct. Ecol. 10, 4-32.
    • Lloyd, J. and Farquhar, G. D. 2000. Do slow-growing species and nutrient-stressed plants consistently respond less to elevated CO2? A clarification of some issue raised by Poorter (1998). Global Change Biol. 6, 871-876.
    • Lloyd, J., Grace, J., Miranda, A. C., Meir, P., Wong, S. C., Miranda, H. S., Wright, I. R., Gash, J. H. C. and McIntyre, J. 1995. A simple calibrated model of Amazon rainforest productivity based on leaf biochemical poperties. Plant, Cell Environ. 18, 1129-1145.
    • Lloyd, J., Francey, R. J., Mollicone, D., Raupach, M. R., Sogachev, A., Arneth, A., Byers, J. N., Kelliher, F. M., Rebmann, C., Valentini, R., Wong, S.-C., Bauer, G. and Schulze, E.-D. 2001. Vertical profiles, boundary-layer budgets, and regional flux estimates for CO2, and its 13C/12C ratio and for water vapor above a forest/bog mosaic in central Siberia. Global Biogeochem. Cycles. 15, 267-284.
    • McMillen R. T. 1988. An eddy correlation technique with extended applicability to non-simple terrain. BoundaryLayer Meteorol. 43, 231-245.
    • McNaughton, K. G. 1994. Effective stomatal and boundary layer resistance of heterogeneous surfaces. Plant Cell Environ. 17, 1061-1068.
    • Makkonen, K. and Helmisaari, H.-S. Fine root biomass and production in Scots pine stands in relation to stand age. Tree Physiol. 21, 193-198.
    • Malhi, Y., Baldocchi, D. D. and Jarvis, P. G. 1999. The carbon balance of tropical temperate and boreal forests. Plant Cell Environ. 22, 715-740.
    • Milyukova, I. M., Kolle, O., Varlagin, A. B., Vygodskaya, N. N., Schulze, E.-D. and Lloyd, J. 2002. Carbon balance of a southern taiga spruce stand in European Russia. Tellus 54B, this issue.
    • Nichol, C. J., Lloyd, J., Shibistova, O., Arneth, A., Ro¨ser, C., Knohl, A., Matsubara, S. and Grace, J. 2002. Remote sensing of photosynthetic light-use efficiency of Siberian boreal forest. Tellus 54B, this issue.
    • O¨ quist, G., Brunes, L., Ha¨llgren, J.-E., Gezelius, K., Helle´n, M. and Malmbberg, G. 1980. Effects of artificial forest hardeining and winter stress on net photosynthesis, photosynthetic electron transport and RuBP carboxylase activity in seedlings on Pinus sylvestris. Physiol. Plant. 48, 526- 531.
    • Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler, R. J., Taylor, N. J., Palmer, J., Gruber, N., Sabine, C. L., Le Que´re´, C., Key, R. M. and Boutin, J. 2001. Estimates of anthropogenic carbon uptake from four 3-D global ocean models. Global Biogeochem. Cycles 15, 43-60.
    • Ottander, C., Campbell, D. and O¨quist, G. 1995. Seasonal changes in Photosystem II organisation and pigment composition in Pinus sylvestris. Planta 197, 176-183.
    • Paul, M. J. and Foyer, Ch. H. 2001. Sink regulation of photosynthesis. J. Exp. Bot. 52, 1383-1400.
    • Paulson, C. A. 1970. The mathematical representation of on windspeed and temperature profiles in the unstable surface layer. J. Appl. Meteorol. 9, 857-861.
    • Prentice, I. C., Farquhar, G. D., Fasham, M., Goulden, M., Heimann, M., Jaramillo, V., Kheshgi, H., Le Que´re´, C., Scholes, R. and Wallace, D. 2001. The carbon cycle and atmospheric CO2. In: Climate change: the scientific basis: The contribution of WGI of the IPCC to the IPCC Third Assessment Report (TAR). (eds. J. Houghton and D. Yihui). Cambridge University Press,183-237.
    • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, 13C and O2/N2 observations. Tellus 51B, 213-232.
    • Ryan, M. G., Lavigne, L. B. and Gower, S. T. 1997. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J. Geophys. Res. 102, 28871-28883.
    • Savitch, L. V., Leonardos, E. D., Krol, M., Jansson, S., Grodzinski, B., Huner, N. P. A. and O¨quist, G. 2002. Two different strategies for light utilization in photosynthesis in relation to growth and cold acclimation. Plant Cell Environ. 25, 761-771.
    • Sawamoto, T., Hatano, R., Yajima, R., Takahashi, K and Isaev, A. P. 2000. Soil respiration in Siberian taiga ecosystems with different histories of forest fire. Soil Sci. Plant Nutr. 46, 31-42.
    • Schulze, E.-D., Lloyd J., Kelliher, F. M., Wirth, C., Rebmann, C., Lu¨hker, B., Mund, M., Knohl, A., Milyukova, I. M., Schulze, W., Ziegler, W., Varlagin, A. B., Sogachev, A. F., Valentini, R., Dore, S., Grigoriev, S., Kolle, O., Panfyorov, M. I., Tchebakova, N. and Vygodskaya, N. N. 1999. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbon sink - a synthesis. Global Change Biol. 5, 703-722.
    • Shibistova, O., Lloyd, J., Evgrafova, S., Savushkina, N., Zrazhewskaya, G., Arneth, A., Knohl, A., Kolle, O. and Schulze, E.-D. 2002a. Seasonal and spatial variability in soil CO2 efflux rates for a central Siberian Pinus sylvestris forest. Tellus 54B, this issue.
    • Shibistova, O., Lloyd, J., Zrazhewskaya, G., Arneth, A., Kolle, O., Astrakhantceva, N., Shijneva, I., Knohl, A. and Schmerler, J. 2002b. Ecosystem respiration budget for a Pinus sylvestris stand in central Siberia. Tellus 54B, this issue.
    • Shibistova, O. B., Lloyd, J., Kolle, O., Arneth, A., Tchebakova, N. M., Zolotoukhine, D. A., Zrazhewskaya, G. and Schulze, E.-D. 2002c. Eddy covariance assessment of CO2 accumulation by mature pine forest. Dokl. Akad. Nauk 383, 1-5 (in Russian).
    • Sudachkova, N. E., Romanova, L. I., Milyutina, I. L., Kozhevnikova, N. N. and Semenova, G. P. 1994. Environmental stress impact on carbohydrate level and distribution in tissues of Scots pine in Siberia. Lesovedenie 6, 3-9 (in Russian).
    • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints of the global atmospheric CO2 budget. Science 247, 1431-1438.
    • Tchebakova, N. M., Kolle, O., Zolotoukhin, D., Arneth, A., Styles, J. M., Vygodskaya N. N., Schulze, E.-D., Shibistova, O. and Lloyd, J. 2002. Inter-annual and seasonal variations of energy and water vapour fluxes above a Pinus sylvestris forest in the Siberian middle taiga. Tellus 54B, this issue.
    • Valentini, R., Metteucci, G., Dolman, A. J. et al. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865.
    • Van der Werf, A., Poorter, H. and Lambers, H. 1994. Respiration as dependent on a species' inherent growth rate and on nitrogen supply to the plant. In: A whole plant perspective on carbon-nitrogen interactions (eds. J. Roy and E.Garnier), SPB Publishing, The Hague, 91-110.
    • Vogg, G., Helm, R., Hansen, J., Scha¨fer, C. and Beck, E. 1998. Frost hardening and photosynthetic performance of Scots pine (Pinus sylvestris L.) needles. I. Seasonal changes in the photosynthetic apparatus and its function. Planta 201, 193-200.
    • Waring, R. H., Landsberg, J. J. and Willians, M. 1998. Net primary production of forests: a constant fraction of gross primary production? Tree Physiol. 18, 135-140.
    • Wirth, C. 2000. Der Einfluß von Feuer auf den Kohlenstoffhausalt sibirischer Kiefernwa¨lder (Pinus sylvestris L.) unter biogeochemischen und populationsbiologischen Aspekten. Ph.D. Thesis, University of Bayreuth, 260 pp.
    • Wirth, C., Schulze, E-.D., Schulze, W., von Stu¨nzer-Karbe, W., Zeigler, W., Milyukova, I. M., Sogatchev, A, Varlagin, A. B., Panfyorov, M., Grigoriev, S., Kusnetova, V., Siry, M., Hardes, G., Zimmermann, R. and Vygodskoya, N. N. 1999. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire. Oecol. 121, 66-80.
    • Wirth, C. Czimczik, C. I. and Schulze, E.-D. 2002a. Beyond annual budgets: carbon flux at different temporal scales in fire-prone Siberian Scots pine forests. Tellus 54B, this issue.
    • Wirth, C., Schulze, E.-D., Kusznetova, V., Hardes, G., Siry, M., Schulze, B. and Vygodskaya, N. N. 2002b. Aboveground net primary productivity of Siberian Scots pine forest - Magnitude and causes of variability at different timescales. Tree Physiology 22, 537-552.
    • Wirth, C., Schulze, E.-D., Lu¨hker, B., Grogoriev, S., Siry, M., Hardes, G., Zeigler, W., Backor, M., Bauer, G. and Vygodskaya, N. N. 2002c. Fire and site type effects on the long-term carbon and nitrogen balance in pristine Siberian Scots pine forests. Plant and Soil (in press).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from