Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Upek, Boris; Minkkinen, Kari; Kolari, Pasi; Starr, Mike; Chan, Tommy; Alm, Jukka; Vesala, Timo; Laine, Jukka; Nikinmaa, Eero (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We determined the landscape variation of forest floor (FF) CO2 uptake (photosynthesis, P), FF CO2 emission (respiration, R) in relation to net ecosystem CO2 exchange (NEE) and environmental factors along a forest-mire ecotone in Finland. The 450 m long ecotone extended from xeric, upland pine dominated habitats, through spruce and transitional spruce-pine-birch forest, to sedge peatlands downslope. The CO2 fluxes were measured at nine stations during 2005 using chamber and IR techniques. Instantaneous P and R measurements for each station were interpolated by fitting their response to continuous records of light (mean R2= 0.66) and temperature (mean R2= 0.77) recorded nearby to give annual estimates. Stand biomass increment was used to estimate the annual CO2 exchange contribution of the trees. Annual P values from −307 to −1632 gCO2m-2yr-1 were inversely correlated with FF light (r =−0.96), FF above-ground biomass (r =−0.92) and canopy openness (r =−0.95). Annual R values from 1263 to 2813 gCO2 m-2 yr-1 were correlated with tree stand foliar biomass (r = 0.77). Estimated NEE values varied from 546 to −1679 gCO2m-2/yr-1, with P contributing from −307 to −1632 gCO2m-2yr-1 (4–90%) to gross ecosystem photosynthetic production (GPP), and R from 1263 to 2813 gCO2m-2yr-1 (70–98%) to gross ecosystem respiration (GR).DOI: 10.1111/j.1600-0889.2007.00328.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E. and co-authors. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110, 423-431.
    • Alm, J., Schulman, L., Walden, J., Nyka¨nen, H., Martikainen, P. J. and co-authors. 1999. Carbon balance of a boreal bog during a year with an exceptionally dry summer. Ecology 80, 161-174.
    • Aurela, M., Laurila, T. and Tuovinen, J. P. 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophysical Research Letters 31, 31:L16119. doi: 632 10.1029/2004GL020315.
    • Cajander, A. K. 1949. Forest types and their significance. Acta Forestalia Fennica 56, 1-69.
    • Chen, W., Zhang, Q., Cihlar, J., Bauhus, J. and Price, D. T. 2004. Estimating fine-root biomass and production of boreal and cool temperate forests using aboveground measurements: A new approach. Plant Soil 265, 31-46.
    • Davidson, E. A., Richardson, A. D., Savage, K. E. and Hollinger, D. Y. 2006. A distinct seasonal pattern of the ratio of soil respiration to total ecosystem respiration in a spruce-dominated forest. Global Change Biol. 12(2), 230-239.
    • Frazer, G. W., Canham, C. D. and Lertzman, K. P. 1999. Gap Light Analyzer (GLA), Version 2.0: Imaging software to extract canopy structure and gap light transmission indices from true-colour fisheye photographs, users manual and program documentation. Copyright c 1999: Simon Fraser University, Burnaby, British Columbia and the Institute of Ecosystem Studies, Millbrook, New York. Available at: http://www.rem.sfu.ca/forestry/downloads/gap light analyzer.htm Gran o¨, J. G., Jurva, R., Kera¨nen, J., Kujala, V., Laitakari, A. and coauthors. 1952. Suomi, a general handbook on the geography of Finland. Fennia 72, 74-99.
    • H o¨gberg, P., Nordgren, A., Buchmann, N., Taylor, A. F. S., Ekblad, A. and co-authors. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411, 789-792.
    • IUSS Working Group WRB. 2006. World reference base for soil resources 2006. World Soil Resources Reports No. 103. FAO, Rome.
    • Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N. and co-authors. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biology 7(3), 269-278. doi: 10.1046/j.1365-2486.2001.00412.x
    • Karjalainen, T. and Kelloma¨ki, S. 1996. Greenhouse gas inventory for land use changes and forestry in Finland based on international guidelines. Mitigation A d a p .Strategies Global Clim. 1, 51-71.
    • Koslari, P., Pumpanen, J., Rannik, U., Ilvesniemi, H., Hari, P. and coauthors. 2004. Carbon balance of different aged Scots pine forests in Southern Finland. Global Change Biol. 10(7), 1106-1119.
    • Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E. and co-authors. 2006. Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecol Manage. 221, 241-248.
    • Laine, J. and Minkkinen, K. 1996. Effect of forest drainage on the carbon balance of a mire: A case study. Scand J Forest Res. 11, 307-312.
    • Laine, J., Komulainen, V.-M., Laiho, R., Minkkinen, K., Rasinma¨ki, A. and co-authors. 2004. Lakkasuo, a guide to mire ecosystems. Helsingin Yliopiston Metsa¨ekologian Laitoksen Julkaisuja, 31. Helsinki, Finland. 123 p.
    • Lappalainen, E. and Ha¨nninen, P. 1993. Suomen turvevarat. Geological survey of Finland. Rep invest. 117, 118 p.
    • Larmola, T., Alm, J., Juutinen, S., Martikainen, P. J. and Silvola, J. 2003. Ecosystem CO2 exchange and plant biomass in the littoral zone of a boreal lake. Freshw. Biol. 48, 1295-1310.
    • Lindroth, A., Grelle, A. and Moren, A.-S. 1998. Long-term measurements of boreal forest carbon balance reveal large temperature sensitivity. Global Change Biol. 4, 443-45.
    • Liski, J., Lehtonen, A., Palosuo, T., Peltoniemi, M., Eggers, T. and coauthors. 2006. Carbon accumulation in Finland's forests 1922-2004 - an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann. Forest Sci. 63, 687-697.
    • Markkanen, T., Rannik, U¨ ., Keronen, P., Suni, T. and Vesala, T. 2001. Eddy covariance fluxes over boreal Scots pine forest. Boreal Env. Res. 6, 65-78.
    • Marklund, L. G. 1988. Biomassafunktioner f o¨r tall, gran och bj o¨rk i Sverige. Sveriges Lantbruksuniversitet. Rapporter-Skog 45, 1-73.
    • Ma¨kela¨, A. 1997. A carbon balance model of growth and self-pruning in trees based on structural relationships. Forest Science 43, 7-24.
    • Ma¨kela¨, A., Kolari, P., Karima¨ki, J., Nikinmaa, E., Pera¨ma¨ki, M. and co-authors. 2006. Modelling five years of weather-driven variation of GPP in a boreal forest. Agr. Forest Meteorol. 139, 382-398.
    • Nyka¨nen, H., Heikkinen, J. E. P., Pirinen, L., Tiilikainen, K. and Martikainen, P. J. 2003. Annual CO2 exchange and CH4 fluxes on a subarctic palsa mire during climatically different years. Global Biogeochemical Cycles 17, 1018. doi:10.1029/2002GB001861
    • Pepin, S., Plamondon, A. P. and Britel, A. 2002. Water relations of black spruce trees on a peatland during wet and dry years. Wetlands 22, 225-233.
    • Pumpanen, J., Ilvesniemi, H. and Hari, P. 2003. A process-based model for predicting soil carbon dioxide efflux and concentration. Soil Sci. Soc. Am. J. 67, 402-413.
    • Pumpanen, J., Westman, C. J. and Ilvesniemi, H. 2004. Soil CO2 efflux from a podzolic forest soil before and after forest clear-cutting and site praparation. Boreal Environ Res. 9, 199-212.
    • Ryan, M. G., Lavigne, M. B. and Gower, S. T. 1997. Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophysical Res. BOREAS Special Issue, 102(D24), 28871-28884.
    • Riutta, T., Laine, J. and Tuittila, E.-S. Sensitivity of CO2 exchange of fen ecosystem components to water level variation. Ecosystems, 40, 718-733. doi: 10.1007/s10021-007-9046-7.
    • Tokola, T., Kangas, A., Kalliovirta, J., Ma¨kinen, A. and Rasinma¨ki, J. 2006. SIMO - SIMulointi ja Optimointi uuteen metsa¨suunnitteluun. Metsa¨tieteen aikakauskirja 1, 60-65. (in Finnish).
    • Tuittila, E. S., Vasander, H. and Laine, J. 2004. Sensitivity of C sequestration in reintroduced Sphagnum to water-level variation in a cutaway peatland. Restoration Ecol. 12, 483-493.
    • Turunen, J., Tomppo, E., Tolonen, K. and Reinikainen, A. 2002. Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions. Holocene 12, 69-80.
    • Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E.-D., Rebmann, C. and co-authors. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865.
    • Vanninen, P. and Ma¨kela¨, A. 1999. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland. Tree Physiol. 19, 823-830.
    • Vesala, T., Haataja, J., Aalto, P., Altimir, N., Buzorius, G. and co-authors. 1998. Long-term field measurements of atmospheresurface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends in Heat, Mass, Momentum Transfer 4, 17-35.
    • Weimin, J., Chen, J. M., Black, A. T., Barr, A. G., Mccaughey, H. and co-authors. 2006. Hydrological effects on carbon cycles of Canada's forests and wetlands. TellusB 58, 16-30.
    • Wilson, D., Alm, J., Riutta, T., Laine, J., Byrne, K. A. and co-authors. 2006. A high resolution green area index for modelling the seasonal dynamics of CO2 exchange in peatland. Plant Ecology DOI 10.1007/s11258-006-9189-1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from