LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sugawara, S.; Kawamura, K.; Aoki, S.; Nakazawa, T.; Hashida, G. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Temporal variations of δ13C of atmospheric CO2 in the past have been reconstructed from the δ13C values of CO2 observed in firn at Dome Fuji, Antarctica. The effective diffusivities of CO2 in firn were estimated for Dome Fuji and another Antarctic site, H72. The age distributions of 13CO2 in firn were first calculated by using a one-dimensional diffusion model, and then the past values of the atmospheric δ13C were derived by using an iterative procedure so that the calculated and observed vertical profiles of δ13C of CO2 in firn agreed with each other. This reconstruction method was also applied to the CH4 concentration to confirm its validity. The values of the atmospheric δ13C thus estimated were in good agreement with those from direct atmospheric measurements at Syowa Station, Antarctica, even for the levelling off of the secular decrease observed in the first half of the 1990s. The statistical uncertainty of the iterative procedure was examined by adding normal pseudo-random numbers to the observed δ13C values in firn. We also calculated the δ13C values for firn at H72 using the reconstructed history of the atmospheric δ13C, and its vertical profile was found to be in close agreement with the observational result.DOI: 10.1034/j.1600-0889.2003.00023.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aoki, S., Nakazawa, T., Murayama, S. and Kawaguchi, S. 1992. Measurements of atmospheric methane at Japanese Antarctic Station, Syowa. Tellus 44B, 273-281.
    • Battle, M., Bender, M., Sowers, T., Tans, P. P., Butler, J. H., Elkins, J. W., Ellis, J. T., Conway, T., Zhang, N., Lang, P. and Clarke, A. D. 1996. Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature 383, 231-235.
    • Bender, M. and Battle, M. 1999. Carbon cycle studies based on the distribution of O2 in air. Tellus 51B, 165-169.
    • Crank, J. 1975. The Mathematics of Diffusion. Clarendon, Oxford, 414 pp.
    • Dlugokencky, E. J., Steele, L. P., Lang, P. M. and Masarie K. A. 1994. The growth rate and distribution of atmospheric methane. J. Geophys. Res. 99, 17 021-17 043.
    • Dlugokencky, E. J., Masarie, K. A., Lang, P. M. and Tans, P. P. 1998. Continuing decline in the growth rate of the atmospheric methane burden. Nature 393, 447-450.
    • Etheridge, D. M., Steele, L. P., Francey, R. J. and Langenfelds, R. L. 1998. Atmospheric methane between 1000 A.D. and present: evidence of anthropogenic emissions and climatic variability. J. Geophys. Res. 103, 15 979-15 994.
    • Francey, R. J., Robbins, F. J., Allison, C. E. and Richards, N. G. 1990. The CSIRO global survey of CO2 stable isotopes. In: Baseline Atmospheric Program (Australia) 1988, (eds. S. R. Wilson and G. P. Ayers), Department of Administrative Service/Bureau of Meteorology in cooperation with CSIRO Division of Atmospheric Research Cape Grim BAPS, Tasmania, Australia, 16-27.
    • Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., Leuenberger, M., Langenfelds, R. L., Michel, E. and Steele, P. L. 1999. A 1000-year high precision record of δ13C in atmospheric CO2. Tellus 51B, 170-193.
    • Friedli, H., Siegenthaler, U., Rauber, D. and Oeschger, H. 1987. Measurements of concentration, 13C/12C and 18O/16O ratios of tropospheric carbon dioxide over Switzerland. Tellus 39B, 80-88.
    • Hirsch, C. 1988. Thomas algorithm for tridiagonal systems. In: Numerical Computation of Internal and External Flows. Willey, Chichester, Vol. 1, pp. 505-508.
    • Kawamura, K. 2000. Variations of atmospheric components over the past 340, 000 yr from Dome Fuji deep ice core, Antarctica, Ph.D. Thesis, Tohoku University, Sendai, Japan.
    • Kawamura, K., Nakazawa, T., Machida, T., Morimoto, S., Aoki, S., Ishizawa, M., Fujii, Y. and Watanabe, O. 2000. Variations of the carbon isotopic ratio in atmospheric CO2 over the last 250 yr recorded in an ice core from H15, Antarctica. Polar Meteorol. Glaciol. 14, 47-57.
    • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G. and Roeloffzen, H. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observed data. AGU Monograph 55, Washington, American Geophysical Union, 165-236.
    • Keeling, C. D., Whorf, T. P., Wahlen, M. and van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980, Nature 375, 666-670.
    • Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218-221.
    • Leuenberger, M. C., Lang, C. and Schwander, J. 1999. Delta15N measurements as a calibration tool for the paleothermometer and gas-ice age differences: a case study for the 8200 B.P. event on GRIP ice. J. Geophys. Res. 104, 22163-22170.
    • Morimoto, S., Nakazawa, T., Higuchi, K. and Aoki, S. 2000. Latitudinal distribution of atmospheric CO2 sources and sinks inferred by δ13C measurements from 1985 to 1991. J. Geophys. Res. 105, 24 315-24 326.
    • Morimoto, S., Nakazawa, T., Aoki, S., Hashida, G. and Yamanouchi, T. 2001. Temporal variations of the atmospheric CO2 concentration and isotope ratios observed at Syowa Station, Antarctica, since 1984. In: Sixth International Carbon Dioxide Conference, Extended Abstract, 1, 205- 207.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1993a. Time and space variations of the carbon isotopic ratio of tropospheric carbon dioxide over Japan. Tellus 45B, 258- 274.
    • Nakazawa, T., Machida, T., Tanaka, M., Fujii, Y., Aoki, S. and Watanabe, O. 1993b. Atmospheric CO2 concentrations and carbon isotopic ratios for the last 250 yr deduced from an Antarctic ice core, H15. In: Extended Abstracts of the 4th International CO2 Conference, Carqueiranne, France, 13- 17 September 1993. World Meteorological Organization, WMO/TD-NO 561.
    • Nakazawa, T., Morimoto S., Aoki S. and Tanaka M. 1997. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region. J. Geophys, Res. 102, 1271-1285.
    • Rommelaere, V., Arnaud, L. and Barnola, J. M. 1997. Reconstructing recent atmospheric trace gas concentrations from polar firn and bubbly ice data by inverse methods. J. Geophys. Res. 102, 30 069-30 083.
    • Schwander, J., 1989. The transformation of snow to ice and the occlusion of gases. In: The Environmental Record in Glaciers and Ice Sheets (eds. H. Oeschger and C. C. Langway), John Wiley & Sons, Berlin 53-67.
    • Schwander, J., Stauffer, B. and Sigg, A. 1988. Air mixing in firn and the air at pore close-off. Ann. Glaciol. 10, 141-145.
    • Schwander, J., Barnola, J. M., Andrie, C., Leuenberger, M., Ludin, A., Raynaud, D. and Stauffer, B. 1993. The age of the air in the firn and the ice at Summit, Greenland. J. Geophys. Res. 98, 2831-2838.
    • Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. 1998. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141-146.
    • Siegenthaler, U. and Mu¨nnich, K. O. 1981. 13C/12C fractionation during CO2 transfer from air to sea. In: Carbon Cycle Modeling (ed. B. Bolin), John Wiley, New York, 246-257.
    • Sowers, T., Bender, M., Raynaud, D. and Korotkevich, Y. S. 1992. δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. J. Geophys. Res. 97, 15 683-15 697.
    • Trolier, M., White, J. W. C., Tans, P. P., Masarie, K. A. and Gemery, P. A. 1996. Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA Global Air Sampling Network. J. Geophys. Res. 101, 25 897-25 916.
    • Trudinger, C. M., Enting, I. G., Etheridge, D. M., Francey, R. J., Levchenko, V. A., Steele, L. P., Raynaud, D. and Arnaud, L. 1997. Modeling air movement and bubble trapping in firn. J. Geophys. Res. 102, 6747-6763.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from