Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Johannessen, Ola M.; Bengtsson, Lennart; Miles, Martin W.; Kuzmina, Svetlana I.; Semenov, Vladimir A.; Alekseev, Genrikh V.; Nagurnyi, Andrei P.; Zakharov, Victor F.; Bobylev, Leonid P.; Pettersson, Lasse H.; Hasselmann, Klaus; Cattle, Howard P. (2004)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects: Meteorology, :Matematikk og Naturvitenskap: 400::Geofag: 450::Meteorologi: 453 [VDP], Climatology, :Matematikk og Naturvitenskap: 400 [VDP]
The transient response of the climate system to anomalously large freshwater input to the high latitude seas is examined using the newly developed Bergen Climate Model. A 150-yr twin-experiment has been carried out, consisting of a control and a freshwater integration. In the freshwater integration, the freshwater input to the Arctic Ocean and the Nordic Seas is artificially increased by a factor of 3, or to levels comparable to those found during the last deglaciation. The obtained response shows a reduced maximum strength of the Atlantic Meridional Overturning Circulation (AMOC) over the first 50 yr of about 6 Sv (1 Sv =106 m3 s−1), followed by a gradual recovery to a level comparable to the control integration at the end of the period. The weakened AMOC in the freshwater integration is caused by reduced deep-water formation rates in the North Atlantic subpolar gyre and in the Nordic Seas, and by a reduced southward flow of intermediate water masses through the Fram Strait. The recovery of the AMOC is caused by an increased basin-scale upwelling in the Atlantic Ocean of about 1 Sv, northward transport of saline waters originating from the western tropical North Atlantic, and a surface wind field maintaining the inflow of Atlantic Water to the Nordic Seas between the Faroes and Scotland. Associated with the build-up of more saline waters in the western tropical North Atlantic, a warming of ∼0.6 ◦C over the uppermost 1000 m of the water column is obtained in this region. This finding is consistent with paleo records during the last deglaciation showing that the tropics warmed when the high latitudes cooled in periods with reduced AMOC. Furthermore, the results support the presence of a coupled North-Atlantic-Oscillation-like atmosphere–sea-ice–ocean response mode triggered by the anomalous freshwater input. Throughout most of the freshwater integration, the atmospheric circulation is characterized by anomalously low sea level pressure in the Nordic Seas and anomalously high sea level pressure over Spain. This forces the North Atlantic Drift to follow a more easterly path in the freshwater integration than in the control integration, giving an asymmetric sea surface temperature response in the northern North Atlantic, and thereby maintaining the properties of the AtlanticWater entering the Nordic Seas between the Faroes and Scotland throughout the freshwater integration.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alekseev, G. V. and Svyaschennikov, P. N. 1991. Natural Variability of Climate Characteristics in Northern Polar Region and Northern Hemisphere. St Petersburg, Russia, Gidrometeoizdat, 159 pp (in Russian).
    • Alekseev, G. V., Aleksandrov, Ye. I., Bekriayev, R. V., Svyaschennikov, P. N. and Harlanienkova, N. Ya. 1999. Surface air temperature from meteorological data. In: Detection and Modelling of Greenhouse Warming in Arctic and sub-Arctic, INTAS Grant 97-1277 Technical Report on Task 1, Arctic and Antarctic Research Institute, St Petersburg, Russia.
    • Alekseev, G. V., Zakharov, V. F. and Radionov, V. F. 2000. In: Problems of Hydrometeorology and Environment at the Start of the XX Century. Proc. Int. Theor. Conf., St Petersburg, Russia, Gidrometeoizdat, 141 pp (in Russian).
    • Alekseev, G. V., Johannessen, O. M., Korablev, A. A., Ivanov, V. V. and Kovalesky, D. V. 2001. Interannual variability of water mass in the Greenland Sea and the adjacent areas. Polar Res. 20, 207- 210.
    • Anderson, L. G. and Kaltin, S. 2001. Carbon fluxes in the Arctic Oceanpotential impact by climate change. Polar Res. 20, 225-232.
    • Beaugrand, G., Reid, P. C., Iban˜ez, F., Lindley, J. A. and Edwards, M. 2002. Reorganization of North Atlantic marine copepod biodiversity and climate. Science 296, 1692-1694.
    • Bengtsson, L. 1999. Numerical modelling of the Earth's climate. In: Modeling the Earth's Climate and its Variability (eds W. R. Holland, S. Joussaume, and F. David). Elsevier, Amsterdam.
    • Bengtsson, L., Semenov, V. and Johannessen, O. M. 2004. The early 20th century warming in the Arctic-a possible mechanism. J. Climate in press.
    • Bjo¨rk, G. and So¨derkvist, J. 2002. Dependence of the Arctic Ocean thickness distribution on the poleward energy flux in the atmosphere. J. Geophys. Res. 107, 10.1029/2000JC000723.
    • Bjørgo, E., Johannessen, O. M. and Miles, M. W. 1997. Analysis of merged SMMR-SSMI time series of Arctic and Antarctic sea ice parameters. Geophys. Res. Lett. 24, 413-416.
    • Chapman, W. L. and Walsh, J. E. 1993. Recent variations of sea ice and air temperature in high latitudes. Bull. Am. Meteorol. Soc. 74, 33- 47.
    • Comiso, J. 2002. A rapidly declining perennial ice cover in the Arctic. Geophys. Res. Lett. 29, 1956 (doi:10.1029/2002GL015650).
    • Cubasch, U. and Voss, R. 2000. The influence of total solar irradiance on climate. Space Sci. Rev. 94, 185-198.
    • Cubasch, U., Voss, R., Hegerl, G. C., Waszkewitz, J. and Crowley, T. J. 1997. Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim. Dyn. 13, 757-767.
    • Delworth, T. L. and Knutson, T. R. 2000. Simulation of early 20th century global warming. Science 287, 2246-2250.
    • Delworth, T. L. and Mann, M. E. 2000. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661- 676.
    • Deser, C., Walsh, J. E. and Timlin, M. S. 2000. Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate 13, 617-633.
    • Friis-Christensen, E. and Lassen, K. 1991. Length of the solar cyclean indicator of solar activity closely associated with climate. Science 254, 698-700.
    • Gordon, C., Cooper, C., Senior, C. A., Banks, H., Gregory, J. M. et al. 2000. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 16, 147-168.
    • Gregory, J. M., Stott, P. A., Cresswell, D. J., Rayner, N. A., Gordon, C. et al. 2002. Recent and future changes in Arctic sea ice simulated by the HadCM3 AOGCM. Geophys. Res. Lett. 29, 2175 (doi:10.1029/2001GL014575).
    • Hansen, J., Ruedy, R., Glascoe, J. and Sato, M. 1999. The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. J. Geophys. Res. 104, 30 997-31 022.
    • Hilmer, M. and Jung, T. 2000. Evidence of recent change in the link between the North Atlantic oscillation and Arctic sea ice export. Geophys. Res. Lett. 27, 989-992.
    • Hilmer, M. and Lemke, P. 2000. On the decrease of Arctic sea ice volume. Geophys. Res. Lett. 27, 3751-3754.
    • Hoerling, M. P., Hurrell, J. W. and Xu, T. 2001. Tropical origins for recent North Atlantic climate change. Science 292, 90-92.
    • Holloway, G. and Sau, T. 2002. Has arctic sea ice rapidly thinned? J. Climate 15, 1691-1698.
    • Hoyt, D. V. and Schatten, K. H. 1993. A discussion of plausible solar irradiance variations, 1700-1992. J. Geophys. Res. 98, 18 895-18 906.
    • Hu, A., Rooth, C., Bleck, R. and Deser, C. 2002. NAO influence on sea ice extent in the Eurasian coastal region. Geophys. Res. Lett. 29, 2053-2056.
    • Hurrell, J. 1995. Decadal trends in the North Atlantic Oscillation: regional temperature and precipitation. Science 269, 676-679.
    • Intergovernmental Panel on Climate Change (IPCC). 2001. Climate Change 2000-Third Assessment Report. Cambridge University Press, Cambridge.
    • Johannessen, O. M., Miles, M. W. and Bjørgo, E. 1995. The Arctic's shrinking sea ice. Nature 376, 126-127.
    • Johannessen, O. M., Shalina, E. V. and Miles, M. W. 1999. Satellite evidence for and Arctic sea ice coverage in transformation. Science 286, 1937-1939.
    • Johannessen, O. M., Shalina, E., Kuzmina, S., Miles, M. W. and Nagurnyi, A. 2001. Shrinking of the Arctic cover over the last decades. In: Proc. Int. Radiation Symp., St Petersburg, Russia, 24-29 July 2000 (eds W. L. Smith, and Y. M. Timofeyev). Deepak Publishing, Hampton, USA, 1007-1011.
    • Jones, P., New, M., Parker, D. E., Martin, S. and Rigor, I. G. 1999. Surface air temperature and its changes over the past 150 years. Rev. Geophys. 37, 173-199.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. et al. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437-471.
    • Kelly, P. M., Jones, P. D., Sear, C. B., Cherry, B. S. G. and Tavakol, R. K. 1982. Variations in surface air temperature: Part 2. Arctic regions, 1881-1980. Mon. Wea. Rev. 110, 71-82.
    • Kwok, R. and Rothrock, D. A. 1999. Variability of Fram Strait ice flux and North Atlantic Oscillation. J. Geophys. Res. 104, 5177- 5180.
    • Lean, J. and Rind, D. 1998. Climate forcing by changing solar radiation. J. Climate 11, 3069-3094.
    • Levitus, S., Antonov, J. I., Boyer, T. P. and Stephens, C. 2000. Warming of the world ocean. Science 287, 2225-2229.
    • Lin, H., Derome, J., Greatbach, R. J., Peterson, K. A. and Lu, J. 2002. Tropical links of the Arctic Oscillation. Geophys. Res. Lett. 29, 1943 (doi:10.1029/2002GL015822).
    • Moritz, R. E., Blitz, C. M. and Steig, E. J. 2002. Dynamics of recent climate change in the Arctic. Science 297, 1497-1502.
    • Nagurnyi, A. P., Korostelev, V. G. and Abaza, P. A. 1994. Wave method for evaluating effective ice thickness of sea ice in climate monitoring. Bull. Russian Acad. Sci. Phys. Suppl. Phys. Vib. 58, 168-174.
    • Nagurnyi, A. P., Korostelev, V. G. and Ivanov, V. V. 1999. Multiyear variability of sea ice thickness in the arctic basin measured by elasticgravity waves on the ice surface. Meteorol. Hydrol. 3, 72-78. (In Russian).
    • Overpeck, J., Hughen, K., Hardy, D., Bradley, R., Case, R. et al. 1997. Arctic environmental change of the last four centuries. Science 278, 1251-1256.
    • Parkinson, C. L., Cavalieri, D. J., Gloersen, P., Zwally, H. J. and Comiso, J. C. 1999. Spatial distribution of trends and seasonality in the hemispheric sea ice covers: 1978-1996. J. Geophys. Res. 104, 20 959-20 856.
    • Peterson, B., Holmes, R. M., McClelland, J. W., Vo¨ro¨smarty, C. J., Lammers, R. B. et al. 2002. Increasing river discharge to the Arctic Ocean. Science 298, 2171-2173.
    • Polyakov, I. V. and Johnson, M. A. 2000. Arctic decadal and interdecadal variability. Geophys. Res. Lett. 27, 4097-4100.
    • Polyakov, I. V., Johnson, M. A., Colony, R. L., Bhatt, U. and Alekseev, G. V. 2002. Observationally based assessment of polar amplification of global warming. Geophys. Res. Lett. 29, 1878 (doi:1029/2002GL011111).
    • Przybylak, R. 2000. Temporal and spatial variation of surface air temperature over the period of instrumental observations in the Arctic. Int. J. Climatol. 20, 587-614.
    • Ragner, C. L. (ed.) 2000. The 21st Century-Turning Point for the Northern Sea Route? Kluwer Academic, Dordrecht.
    • Rahmsdorf, S. 1999. Shifting seas in the greenhouse? Nature 399, 523- 524.
    • Ra¨isa¨nen, J. 2001. CO2-induced climate change in CMIP2 experiments: Quantification of agreement and role of internal variability. J. Climate 14, 2088-2104.
    • Rayner, N. A., Horton, E. B., Parker, D. E., Folland, C. K. and Hackett, R. B. 1996. Version 2.2 of the Global Sea-Ice and Sea Surface Temperature Data Set, 1903-1994. Climate Research Technical Note 74, Hadley Centre for Climate Prediction and Research, Bracknell, UK.
    • Reichert, K. B., Schnur, R. and Bengtsson, L. 2002. Global ocean warming tied to anthropogenic forcing. Geophys. Res. Lett. 29, 1525 (doi10.1029/2001GL013954).
    • Roeckner, E., Bengtsson, L., Feichter, J., Lelieveld J. and Rodhe, H. 1999. Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J. Climate 12, 3004-3032.
    • Romanov, I. P. 1995. In: Atlas of Ice and Snow of the Artic Basin and Siberian Shelf Seas (ed. A. Tunik). Backbone Publishing, Elmwood Park, USA, 277 pp.
    • Rothrock, D. A., Yu, Y. and Maykut, G. A. 1999. Thinning of the arctic sea-ice cover. Geophys. Res. Lett. 26, 3469-3472.
    • Rothrock, D. A., Zhang, J. and Yu, Y. 2003. The arctic ice thickness anomaly of the 1990s: A consistent view from observations and models. J. Geophys. Res. 108, C3 (doi:10.1029/2001JC001208).
    • Schlesinger, M. E. and Ramankutty, N. 1994. An oscillation in the global climate system of period 65-70 years. Nature 367, 723-726.
    • Schneider, E., Bengtsson L. and Hu, Z. Z. 2003. Forcing of Northern Hemisphere climate trends. J. Atoms. Sci. 60, 1504-1521.
    • Serreze, M. C., Walsh, J. E., Chapin, F. S., Osterkamp, T., Dyurgerov, M. et al. 2000. Observational evidence of recent change in the northern high-latitude environment. Clim. Change 46, 159-207.
    • Serreze, M. C., Maslanik, J. A., Scambos, T. A., Fetterer, F., Stroeve, J. et al. 2003. A record minimum sea ice cover in the Arctic Ocean for summer 2002. Geophys. Res. Lett. 30, 1110 (doi:10.1029/2002GL016406).
    • Stott, P. A., Tett, S. F. B., Jones, G. S., Allen, M. R., Mitchell, J. F. B. et al. 2001. External control of 20th century temperature by natural and anthropogenic forcings. Science 290, 2133-2137.
    • Thejll, P. and Lassen, K. 2000. Solar forcing of the Northern hemisphere land air temperature: New data. J. Atmos. Solar-Terr. Phys. 62, 1207- 1213.
    • Tucker, W. B. III, Weatherly, J. W., Eppler, D. T., Farmer, L. D. and Bentley, D. L. 2001. Evidence for rapid thinning of sea ice in the western Arctic Ocean at the end of the 1980s. Geophys. Res. Lett. 28, 2851-2854.
    • Venegas, S. A. and Mysak, L. A. 2000. Are there natural time scales of climate variability in the Arctic? J. Climate 13, 3412-3434.
    • Vinje, T. 2001. Fram Strait ice fluxes and atmospheric circulation: 1950- 2000. J. Climate 14, 3508-3517.
    • Vinnikov, K. Ya. 1977. On the issue of data production and interpretation of NH SAT change for 1881-1975. Met. Gidr. 9, 110-114 (in Russian).
    • Vinnikov, K. Ya., Robock, A., Stouffer, R. J., Walsh, J. E., Parkinson, C. L. et al. 1999. Global warming and Northern Hemisphere sea ice extent. Science 286, 1934-1936.
    • Wadhams, P. 1997. Ice thickness in the Arctic Ocean: The statistical reliability of experimental data. J. Geophys. Res. 102, 27 951- 27 959.
    • Wadhams, P. and Davis, N. 2000. Further evidence of the ice thinning in the Arctic Ocean. Geophys. Res. Lett. 27, 3973-3975.
    • Winsor, P. 2001. Arctic sea ice thickness remained constant during the 1990s. Geophys. Res. Lett. 28, 1039-1042.
    • Zakharov, V. F. 1997. Sea Ice in the Climate System. World Climate Research Programme/Arctic Climate System Study, WMO/TD 782, World Meteorological Organization, Geneva, 80 pp.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.