Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Rayner, P. J.; Enting, I. G.; Francey, R. J.; Langenfelds, R. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
This paper presents an attempt to recover the space–time structure of fluxes of CO2 to the atmosphere over the period 1980–1995 from atmospheric concentration and isotopic composition measurements. The technique used is Bayesian synthesis inversion in which sources are aggregated into large regions and their strengths adjusted to match observed concentrations. The sources are constrained by prior estimates based on a priori knowledge. The input data are atmospheric CO2 concentration measurements from the NOAA/CMDL network, 13CO2 composition and O2/N2 ratios measured at Cape Grim, Tasmania by CSIRO Atmospheric Research. The primary findings are a relatively large long-term mean ocean uptake of CO2, and seasonal fluxes over land with similar integrated magnitude, but smaller peak amplitude, compared with those derived by Fung and co-workers. Predicted interannual variability is smaller than reported in previous studies. The largest contributor is the oceanic tropics where fluxes vary on the time scale of the southern oscillation. There is evidence of longer time-scale variation in land uptake. Increases in ocean uptake and northern land uptake in the early 1990s are consistent with a response to the Mt. Pinatubo eruption.DOI: 10.1034/j.1600-0889.1999.t01-1-00008.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • oceanic and terrestrial carbon uptake since 1982. Nature 373, 326-330.
    • Francey, R. J., Allison, C. E., Etheridge, D. M., Trudinger, C. M., Enting, I. G., Leuenberger, M., Langenfelds, R. L., Michel, E. and Steele, L. P. 1999. A 1000-year high precision record of d13C in atmospheric CO2. T ellus 51B, 170-193.
    • Fung, I. Y., Tucker, C. J. and Prentice, K. C. 1987. Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO2. J. Geophys. Res. 92, 2999-3015.
    • Fung, I., John, J., Lerner, J., Matthews, E., Prather, M., Steele, L. P. and Fraser, P. J. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96, 13033-13065.
    • Galloway, J. N., Schlesinger, W. H., Levy II, H., Michaels, A. and Schnoor, L. 1995. Nitrogen fixation: Anthropogenic enhancement-environmental response. Glob. Biogeochem. Cyc. 9, 235-252.
    • Houghton, J., Jenkins, G. and Ephraums, J. (eds.) 1990. Climate change. T he IPCC assessment. Cambridge University Press.
    • Kaminski, T., Heimann, M. and Giering, R. 1998. A matrix representation for an atmospheric transport model computed by its adjoint. Air pollution modelling and its application; xii, pp. 247-255. Plenum Press.
    • Kauppi, P. E., Mielika¨inen, K. and Kuusela, K. 1992. Biomass and carbon budget of European forests, 1971 to 1990. Science 256, 70-74.
    • Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358, 723-727.
    • Keeling, C. D., Piper, S. C. and Heimann, M. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds (4). Mean annual gradients and interannual variations. Aspects of climate variability in the Pacific and the Western Americas. Geophysical Monograph 55, D. Peterson (ed.). AGU, Washington (USA) 305-363.
    • Keeling, C. D., Whorf, T. P., Wahlen, M. and Van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666-670.
    • Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218-221.
    • Langenfelds, R. L., Francey, R. J., Steele, L. P., Keeling, R. F., Battle, M. and Budd, W. F. 1999. Measurements of O2/N2 ratio from the Cape Grim Air Archive and three independent flask sampling programs. Baseline Atmospheric Program Australia 1996 (eds. Dick, A. L., Gras, J. L., Derek, N. and Tindale, N. W.). Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, in press.
    • Law, R. and Simmonds, I. 1996. The sensitivity of deduced CO2 sources and sinks to variations in transport and imposed surface concentrations. T ellus 48B, 613-625.
    • Law, R. M., Rayner, P. J., Denning, A. S., Erickson, D., Fung, I. Y., Heimann, M., Piper, S. C., Ramonet, M., Taguchi, S., Taylor, J. A., Trudinger, C. M. and Watterson, I. G. 1996. Variations in modelled atmospheric transport of carbon dioxide and the consequences for CO2 inversions. Glob. Biogeochem. Cyc. 10, 483-496.
    • Law, R. 1996. The selection of model-generated CO2 data: a case study with seasonal biospheric sources. T ellus 48B, 474-486.
    • Law, R. M. 1999. CO2 sources from a mass-balance inversion: sensitivity to the surface constraint. T ellus, this issue.
    • Marland, G. and Boden, T. 1997. Estimates of global, regional, and national annual CO2-emissions f rom fossilfuel burning, hydraulic cement production, and gas flaring: 1950-1994. NDP-030R7 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.
    • Marland, G., Boden, T. A., GriYn, R. C., Huang, S. F., Kanciruk, P. and Nelson, T. R. 1989. Estimates of CO2 emissions from fossil fuel burning and cement manufacturing, based on the US Bureau of Mines cement manufacturing data. ORNL/ CDIAC-25,NDP-030 Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1997. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region. J. Geophys. Res. 102, 1271-1285.
    • Pearman, G. I. and Hyson, P. 1986. Global transport and inter-reservoir exchange of carbon dioxide with particular reference to stable isotopic distributions. J. Atmos. Chem. 4, 81-124.
    • Prather, M., McElroy, M., Wofsy, S., Russell, G. and Rind, D. 1987. Chemistry of the global troposphere: fluorocarbons as tracers of air motion. J. Geophys. Res. 92, 6579-6613.
    • Quay, P. D., Tilbrook, B. and Wong, C. S. 1992. Oceanic uptake of fossil fuel CO2: carbon-13 evidence. Science 256, 74-79.
    • Ramonet, M. and Monfray, P. 1996. CO2 baseline concept in 3-D atmospheric transport models. T ellus 48B, 502-520.
    • Sarmiento, J. L. and Sundquist, E. 1992. Revised budget for the oceanic uptake of CO2. Nature 356, 589-593.
    • Sarmiento, J. L., Orr, J. C. and Sigenthaler, U. 1992. A perturbation simulation of CO2 uptake in an ocean general circulation model. J. Geophys. Res. 97, 3621-3646.
    • Schimel, D., Enting, I., Heimann, M., Wigley, T., Raynaud, D., Alves, D. and Siegenthaler, U. 1995. CO2 and the carbon cycle. Climate change 1994: radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios (eds. Houghton, J., Filho, L. M., Bruce, J., Lee, H., Callander, B., Haites, E., Harris, N. and Maskell, K.). Cambridge University Press, pp. 35-71.
    • Takahashi, T., Feely, R. A., Weiss, R. F., Wanninkhof, R. H., Chipman, D. W., Southerland, S. C. and Takahashi, T. T. 1997. Global air-sea flux of CO2: An estimate based on measurements of sea-air pCO2-diVerence. Proc. Nat. Acad. Sci. 94, 8292-8299.
    • Tans, P. P., Fung, .I. Y. and Takahashi, T. 1990, Observational constraints on the global atmospheric CO2 budget. Science 247, 1431-1438.
    • Tans, P. P., Berry, J. A. and Keeling, R. F. 1993. Oceanic 13C/12C observations: a new window on ocean CO2 uptake. Glob. Biogeochem. Cyc. 7, 353-368.
    • Tarantola, A. 1987. Inverse problem theory: methods for data fitting and parameter estimation. Elsevier, Amsterdam.
    • Thompson, M. L., Enting, I. G., Pearman, G. I. and Hyson, P. 1986. Interannual variation of atmospheric CO2 concentration. J. Atmos. Chem. 4, 125-155.
    • Trampert, J. and Snieder, R. 1996. Model estimations biased by truncated expansions: possible artifacts in seismic tomography. Science 271, 1257-1260.
    • Trudinger, C. M., Enting, I. G., Francey, R. J., Etheridge, D. M. and Rayner, P. J. 1999. Long-term variability in the global carbon cycle inferred from a high precision CO2 and d13C ice-core record. T ellus 51B, 233-249.
    • Wofsy, S. C., Goulden, M. L., Munger, J. W., Fan, S. M., Bakwin, P. S., Daube, B. C., Bassow, S. L. and Bazzaz, F. A. 1993. Net exchange of CO2 in a mid-latitude forest. Science 260, 1314-1317.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from