Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Zhang, Xia; Nakazawa, Takakiyo; Ishizawa, Misa; Aoki, Shuji; Nakaoka, Shin-Ichiro; Sugawara, Satoshi; Maksyutov, Shamil; Saeki, Tazu; Hayasaka, Tadahiro (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
We present analysis of the temporal variation of atmospheric CO2 in the subtropical region of East Asia, obtained aboard a ferry between Ishigaki Island and Hateruma Island, Japan for the period June 1993–April 2005. The annual mean CO2 concentration increases from 360.1 ppmv in 1994 to 378.4 ppmv in 2004, showing an average growth rate of 1.8 ppmv yr-1. The growth rate shows interannual variations with high values during ENSO events. The average seasonal CO2 cycle reaches the maximum in early April and the minimum in mid-September, with a peak-to-peak amplitude of 8.5 ppmv. Numerical simulations using a three-dimensional atmospheric transport model show interannual variations of the CO2 growth rate similar to the observation, but the amplitude of the seasonal cycle is larger, with maximum concentration appearing earlier than the observation by 1 month. Low CO2 values observed during the spring of 1998 are likely associated with the 1997/1998 ENSO event. A backward trajectory analysis suggests that they were due to changes in atmospheric transport whereby maritime air masses from the Pacific Ocean dominated over polluted air masses from the Asian Continent. Extreme values (either high or low) of CO2 are also occasionally observed. A comparison of backward trajectories of air parcels with CO2 concentration fields calculated using the atmospheric transport model shows that these unusual CO2 concentrations result from the transport of air affected not only by anthropogenic CO2 emissions but also by terrestrial biospheric activities mainly in China.DOI: 10.1111/j.1600-0889.2007.00288.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bacastow, R. B., Adams, J. A., Keeling, C. D., Moss, D. J., Whorf, T. P. and co-authors. 1980. Atmospheric carbon-dioxide, the Southern Oscillation, and the weak 1975 El-Nino. Science 210, 66-68.
    • Bousquet, P., Peylin, P., Ciais, P., Quere, C. L., Freidlingstein, P. and co-authors. 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290, 1342-1346.
    • Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R. and co-authors. 1994. Evidence for interannual variability of the carbon cycle from the NOAA/CMDL global air sampling network. J. Geophys. Res. 99, 22,831-22,855.
    • Dargaville, R., Law, R. M. and Pribac, F. 2000. Implications of interannual variability in atmospheric circulation on modeled CO2 concentrations and source estimates. Global Biogeochem. Cycles 14, 931-943.
    • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J. and co-authors. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic CO2 data and models. Science 282, 442- 446.
    • Feely, R. A., Wanninkhof, R., Takahashi, T. and Tans, P. P. 1999. Influence of El Nino on the equatorial Pacific contribution to atmospheric CO2 accumulation. Nature 398, 597-601.
    • Francey, R. J., Tans, P. P., Allison, C. E., Enting, I. G., White, J. W. C. and co-authors. 1995. Changes in oceanic and terrestrial carbon uptake since 1982. Nature 373, 326-330.
    • Fujita, D., Ishizawa, M., Maksyutov, S., Thornton, P. E., Saeki, T. and co-authors. 2003. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model. Tellus 55B, 530- 546.
    • Fung, I., Prentice, K., Matthews, E., Lerner, J. and Russell, G. 1983. Three-dimensional tracer model study of atmospheric CO2: response to seasonal exchanges with the terrestrial biosphere. J. Geophys. Res. 88, 1281-1294.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D. and co-authors. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626- 630.
    • Heimann, M., Keeling, C. D. and Tucker, C. J. 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 3. Seasonal cycle and synoptic time scale variations. In: Aspects of Climate Variability in the Pacific and the Western Americans Geophys. Monogr. 55 (ed. Peterson, D. H.). Am. Geophys. Union, Washington DC, 277-303.
    • Higuchi, K., Murayama, S. and Taguchi, S. 2002. Quasi-decadal variation of the atmospheric CO2 seasonal cycle due to atmospheric circulation changes: 1979-1998. Geophys. Res. Lett. 29, doi:10.1029, 2001GL013751.
    • Keeling, C. D. and Revelle, R. 1985. Effects of El-Nin˜o Southern Oscillation on the atmospheric content of carbon dioxide. Meteoritics 20, 437-450.
    • Keeling, C. D. and Whorf, T. P. 2005. Atmospheric CO2 records from sites in the SIO air sampling network. In Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
    • Keeling, C. D., Bacastow, T. R., Carter, A. F., Piper, S. C., Whorf, T. P. and co-authors 1989. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Aspects of Climate Variability in the Pacific and the Western Americas Geophys. Monogr. 55 (ed. Peterson, D. H.). Am. Geophys. Union, Washington DC, 165-236.
    • Keeling, C. D., Whorf, T. P., Wahlen, M. and Van der Pflicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666-670.
    • Keeling, C. D., Chin, J. F. S. and Whorf, T. P. 1996. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146-149.
    • Langenfelds, R. L., Francey, R. J., Pak, B. C., Steele, L. P., Lloyd, J. and co-authors. 2002. Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning. Global Biogeochem. Cycles 16(3), 1048, doi:10.1029/2001GB0011466.
    • Liu, H., Jacob, D. J., Bey, I., Yantosca, R. M. and Duncan, B. N. 2003. Transport pathways for Asian pollution outflow over the Pacific: interannual and seasonal variations. J. Geophys. Res. 108, 8786, doi:10.1029/2002JD003102.
    • Maksyutov, S. and Inoue, G. 2000. Vertical profiles of radon and CO2 simulated by the global atmospheric transport model. In: CGER Supercomputer activity report, CGER-I039-2000, CGER NIES Volume 7. Tsukuba, Japan, 39-41.
    • Marland, G.., Boden, T. A. and Andres, R. J. 2003. Global, regional, and national CO2 emissions. In: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A.
    • Murayama, S., Taguchi, S. and Higuchi, K. 2004. Interannual variation in the atmospheric CO2 growth rate: Role of atmospheric transport in the Northern Hemisphere. J. Geophys. Res. 109, D02305.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1993. Time and space variations of the carbon isotopic ratio of tropospheic carbon dioxide over Japan. Tellus 45B, 258-274.
    • Nakazawa, T., Morimoto, T., Aoki, S. and Tanaka, M. 1997a. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the Western Pacific region. J. Geophys. Res. 102, 1271-1285.
    • Nakazawa, T., Ishizawa, M., Higuchi, K. and Trivett, B. A. N. 1997b. Two curve fitting methods applied to CO2 flask data. Environmetrics 8, 197-218.
    • Patra, P. K., Maksyutov, S. and Nakazawa, T. 2005a. Analysis of atmospheric CO2 growth rates at Mauna Loa using inverse model derived CO2 fluxes. Tellus 57B, 357-365.
    • Patra, P. K., Maksyutov, S., Ishizawa, M., Nakazawa, T. and Inoue, G. 2005b. Effects of biomass burning and meteorological conditions on land-atmosphere CO2 flux from atmospheric CO2 inverse modeling. Global Biogeochem. Cycle 19, GB3005, doi:10.1029/2004GB002258.
    • Patra, P. K., Maksyutov, S., Ishizawa, M., Nakazawa, Takahashi, T. and Ukita, J. 2005c. Interannual and decadal changes in the sea-air CO2 flux from atmospheric CO2 inverse modeling. Global Biogeochem. Cycle 19, GB4013, doi:10.1029/2004GB002257.
    • Rayner, P. J. and Law, R. M. and Dargaville, R. 1999. The relationship between tropical CO2 fluxes and the El Nin˜o-Southern Oscillation. Geophys. Res. Lett. 26, 493-496.
    • Schultz, M. G. 2002. On the use of ATSR fire count data to estimate the seasonal and interannual variability of vegetation fire emissions. Atmos. Chem. Phys. 2, 387-395.
    • Taguchi, S., Murayama, S. and Higuchi, K. 2003. Sensitivity of interannual variation of CO2 seasonal cycle at Mauna Loa to atmospheric transport. Tellus 55B, 547-554.
    • Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N. and co-authors. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep Sea Res. II 49, 1601-1622.
    • Tanaka, M., Nakazawa, T. and Aoki, S. 1983. High quality measurements of the concentration of atmospheric carbon dioxide. J. Meteorol. Soc. Japan 61, 678-875.
    • Tanaka, M., Nakazawa, T. and Aoki, S. 1987. Time and space variations of tropospheric carbon dioxide over Japan. Tellus 39B, 72-79.
    • Tans, P. P., Conway, T. J. and Nakazawa, T. 1989. Latitudinal distribution of the sources and sinks of atmospheric carbon dioxide derived from surface observations and an atmospheric transport model. J. Geophys. Res. 94, 5151-5172.
    • Tans, P. P., Fung, I. Y. and Takahashi, T. 1990. Observational constraints on the global atmospheric CO2 budget. Science 247, 1431-1438.
    • Thornton, P. E., Law, B. E., Gholz, H. L., Clark, K. L., Falge, E. and co-authors. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests. Agric. For. Meteorol. 133, 185-222.
    • Van Aardenne, J. A., G. R., Carmichael, G. R., Levy II, H., Streets, D. and Hordijk, L. 1999. Anthropogenic NOx emissions in Asia in the period 1990-2020. Atmos. Environ. 33, 633-646.
    • Wong, C. S., Chan, Y.-H., Page, J. S., Smith, G. E. and Bellegay, R. D. 1993. Changes in equatorial CO2 flux and new production estimated from CO2 and nutrient levels in Pacific surface waters during the 1986/87 El Nino. Tellus 45B, 64-79.
    • Zhang, Y., Sperber, K. R. and Boyle, J. S. 1997. Climatology and interannual variation of the East Asian winter monsoon: results from the 1979-95 NCEP/NCAR reanalysis. Mon. Weather Rev. 125, 2605- 2619.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from