LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Francey, R. J.; Allison, C. E.; Etheridge, D. M.; Trudinger, C. M.; Enting, I. G.; Leuenberger, M.; Langenfelds, R. L.; Michel, E.; Steele, L. P. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
We present measurements of the stable carbon isotope ratio in air extracted from Antarctic ice core and firn samples. The same samples were previously used by Etheridge and co-workers to construct a high precision 1000-year record of atmospheric CO2 concentration, featuring a close link between the ice and modern records and high-time resolution. Here, we start by confirming the trend in the Cape Grim in situ δ13C record from 1982 to 1996, and extend it back to 1978 using the Cape Grim Air Archive. The firn air δ13C agrees with the Cape Grim record, but only after correction for gravitational separation at depth, for diffusion effects associated with disequilibrium between the atmosphere and firm, and allowance for a latidudinal gradient in δ13C between Cape Grim and the Antarctic coast. Complex calibration strategies are required to cope with several additional systematic influences on the ice core δ13C record. Errors are assigned to each ice core value to reflect statistical and systematic biases (between ± 0.025‰ and ± 0.07‰); uncertainties (of up to ± 0.05‰) between core-versus-core, ice-versus-firn and firn-versus-troposphere are described separately. An almost continuous atmospheric history of δ13C over 1000 years results, exhibiting significant decadal-to-century scale variability unlike that from earlier proxy records. The decrease in δ13C from 1860 to 1960 involves a series of steps confirming enhanced sensitivity of δ13C to decadal timescale-forcing, compared to the CO2 record. Synchronous with a ‘‘Little Ice Age’′ CO2 decrease, an enhancement of δ13C implies a terrestrial response to cooler temperatures. Between 1200 AD and 1600 AD, the atmospheric δ13C appear stable.DOI: 10.1034/j.1600-0889.1999.t01-1-00005.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allison, C. E., Francey, R. J. and Meijer, H. A. J. 1995. Recommendations for the reporting of stable isotope measurements of carbon and oxygen in CO2 gas. Reference and intercomparison materials for stable isotopes of light elements. In: Proceedings of IAEA consultants' meeting, Vienna, Austria, 1-3 December 1993. IAEA-TECDOC-825, International Atomic Energy Agency, Vienna, pp. 155-162.
    • Allison, C. E. and Francey, R. J., 1999. d13C of atmospheric CO2 at Cape Grim: The in situ record, the flask record, air standards and the CG92 calibration scale. In: Baseline atmospheric program (Australia) 1996 (A. L. Dick, N. Derek and W. Bouma, eds.). Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, in press.
    • Andres, R. J., Marland, G., Boden, T. and BishoV, S. 1998. Carbon dioxide emissions from fossil fuel combustion and cement manufacture 1751-1991 and an estimate of their isotopic composition and latitudinal distribution. In: T he carbon cycle (T. M. Wigley, ed.). Cambridge University Press, Stanford, in press.
    • Baksaran, M. and Krishnamurthy, R. V. 1993. Speleothems as proxy for the carbon isotope composition of atmospheric CO2. Geophys. Res. L ett. 20, 2905-2908.
    • Beggs, H. M. 1996. Air-sea exchange of CO2 over the Antarctic seasonal ice zone. Ph.D. Thesis, University of Tasmania, Hobart, Tasmania, Australia.
    • Bo¨ hm, F., Joachimski, M. M., Lehnert, H., Morgenroth, G., Kretschmer, W. Vacelet, J. and Dullo W.-Chr. 1996. Carbon isotopes from extant Caribbean and South Pacific sponges: evolution of d13C in surface water DIC. Earth and Planet. Sci. L ett. 139, 291-303.
    • Craig, H., Horibe, Y. and Sowers, T. 1988. Gravitational separation of gases and isotopes in polar ice caps. Science 242, 1675-1678.
    • DruVel, E. R. M. and Benavides, L. M. 1986. Input of excess CO2 to the surface ocean calculated from stable carbon isotope ratios in a banded Jamaican sclerosponge, Nature 321, 58-61.
    • Enting, I. G. 1987. On the use of smoothing splines to filter CO2 data. J. Geophys. Res. 92, 10,977-10,984.
    • Etheridge, D. M., Pearman, G. I. and de Silva, F. 1988. Atmospheric trace-gas variations as revealed by air trapped in an ice core from Law Dome, Antarctica. Ann. Glaciol. 10, 28-33.
    • Etheridge, D. M. and Wookey, C. W. 1989. Ice core drilling at a high accumulation area of Law Dome, Antarctica, 1987. In: Ice core drilling, Proceedings of the 3rd International Workshop on Ice core drilling technology. Grenoble, France, October 10-14 1988 (C. Rado and D. Beaudoing, eds.). CNRS, Grenoble, pp. 86-96.
    • Etheridge, D. M., Pearman, G. I. and Fraser, P. J. 1992. Changes in tropospheric methane between 1841 and 1978 from a high accumulation-rate Antarctic ice core. T ellus 44B, 282-294.
    • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J.-M. and Morgan, V. I. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, D2, 4115-4128.
    • Etheridge, D. M., Steele, L. P., Francey, R. J. and Langfenfelds, R. L. (1998). Atmospheric methane between 1000 AD and present: evidence of anthropogenic change and climate variability. J. Geophys. Res. 103, 15,979-15,993.
    • Farquhar, G. D., O'Leary, M. H. and Berry, J. A. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust. J. Plant Physiol. 9, 121-137.
    • Farquhar, G. D. 1983. On the nature of carbon isotope discrimination in C4 species. Aust. J. Plant Physiol. 10, 205-226.
    • Francey, R. J. 1986. Carbon isotope measurements in baseline air, forest canopy air, and plants. In: T he changing carbon cycle: a global analysis (J. R. Trabalka and D. E. Riechle, eds.). Springer-Verlag, NY, pp. 160-174.
    • Francey, R. J. and Farquhar, G. D. 1982. An explanation of 13C/12C variations in tree rings. Nature 297, 28-31.
    • Francey, R. J., Allison, C. E., Steele, L. P., Langenfelds, R. L., Welch, E. D. White, J. W. C., Trolier, M., Tans, P. P. and Masarie, K. A. 1994. Intercomparison of stable isotope measurements of CO2. In: Climate monitoring and diagnostics laboratory, no. 22, summary report, 1993 (J. T. Peterson and R. M. Rosson, eds.). US Department of Commerce, NOAA, Boulder Co., pp. 106-110.
    • Francey, R. J. and Allison, C. E. 1994. The trend in atmospheric d13CO2 over the last decade. In: Final report of the IAEA coordinated research program on isotope variations of carbon dioxide and other trace gases in the atmosphere (K. Rozanski, ed.). Vienna, 7-10 November 1994, 7 pages.
    • Francey R. J., Tans, P. P., Allison, C. E., Enting, I. G., White, J. W. C. and Trolier, M. 1995a. Changes in the oceanic and terrestrial carbon uptake since 1982. Nature 373, 326-330.
    • Francey, R. J., Allison, C. E. and Welch, E. D. 1995b. The 11-year high precision in situ CO2 stable isotope record from Cape Grim, 1982-1992. In; Baseline atmospheric program (Australia) 1992 (A. L. Dick and P. J. Fraser, eds.). Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, pp. 16-25.
    • Francey, R. J., Steele, L. P., Langenfelds, R. L., Lucarelli, M. P., Allison, C. E., Beardsmore, D. J., Coram, S. A., Derek, N., de Silva, F., Etheridge, D. M., Fraser, P. J., Henry, R. J., Turner, B. and Welch, E. D. 1996a. Global Atmospheric Sampling Laboratory (GASLAB): supporting and extending the Cape Grim trace gas programs. In: Baseline atmospheric program (Australia) 1993 (R. J. Francey, A. L. Dick and N. Derek, eds.). Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne, pp. 8-29.
    • Francey, R. J., Allison, C. E., Etheridge, D. M., Leuenberger, M. and Michel, E. 1996b. Linking an 800 year record of atmospheric d13C from Antarctic ice with measurements of the contemporary atmosphere. Extended abstract. In: Isotope-aided studies of atmospheric carbon dioxide and other greenhouse gasesPhase 2 (M. Gro¨ ning and E. Gibert-Massault, eds.). International Atomic Energy Agency, Vienna, 28-31 October 1996, 9 p.
    • Francois, R., Altabet, M., Goericke, R., McCorkle, D., Brunet, C and Poisson, A. 1993. Changes in the d13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean. Global Biogeochem. Cycles 7, 627-644.
    • Friedli, H., L o¨tscher, H., Oeschger, H Siegenthaler, U. and StauVer, B. 1986. Ice core record of the C13/C12 ratio of atmospheric CO2 in the past two centuries. Nature 324, 237-238.
    • Heimann, M. and Maier-Reimer, E. 1996. On the relations between the oceanic uptake of CO2 and its carbon isotopes. Global Biogeochem. Cycles 10, 89-110.
    • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R. and Woodwell, G. M. 1983. Changes in the carbon content of terrestrial biota and soil between 1860 and 1980: a net release of CO2 to the atmosphere. Ecological Monographs 53, 235-262.
    • Joos, F., Bruno, M., Leuenberger M. and Francey, R. 1994. Carbon isotopes as constraints for global carbon cycle models. In: Final report of the IAEA coordinated research program on isotope variations of carbon dioxide and other trace gases in the atmosphere (K. Rozanski, ed.). IAEA,Vienna, 7-10 November 1994, 5 pages.
    • Keeling, C. D., Mook, W. G. and Tans, P. P. 1979. Recent trends in the 13C/12C ratio of atmospheric carbon dioxide. Nature 277, 121-123.
    • Keeling, C. D., Bacastow, R. B. and Tans, P. P. 1980. Predicted shift in the 13C/12C of atmospheric carbon dioxide. Geophys. Res. L ett. 7, 505-508.
    • Keeling, C. D., Bacastow, R. B., Carter, A. F., Piper, S. C., Whorf, T. P., Heimann, M., Mook, W. G. and RoeloVzen, H. 1989a. A three-dimensional model of atmospheric CO2 transport based on observed winds: 1. Analysis of observational data. In: Aspects of climate variability in the Pacific and western Americas. Geophysical Monograph 55 (J. H. Peterson, ed.). AGU, Washington, pp. 165-236.
    • Keeling, C. D., Piper, S. C. and Heimann, M. 1989b. A three-dimensional model of atmospheric CO2 transport based on observed winds: 4. Mean annual gradients and interannual variations. In: Aspects of climate variability in the Pacific and western Americas. Geophysical Monograph 55 (J. H. Peterson, ed.). AGU, Washington, pp. 305-363.
    • Keeling, C. D. 1993. Lecture 2: surface ocean CO2. In: T he global carbon cycle (M. Heimann, ed.). SpringerVerlag, Berlin, pp. 413-429.
    • Keeling, C. D., Whorf, T. P., Wahlen, M. and van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666-670.
    • Lang, S. J. 1991. MSc T hesis. University of Melbourne, Melbourne, Victoria, Australia.
    • Langenfelds, R. L., Fraser, P. J., Francey, R. J., Steele, L. P., Porter, L. W. and Allison, C. E. 1996. The Cape Grim Air Archive: the first 17 years, 1978-1995. Baseline atmospheric program Australia 1994-95 (R. J. Francey, A. L. Dick and N. Derek, eds). Bureau of Meteorology and CSIRO Division of Atmospheric Research, Melbourne. pp. 53-70.
    • Leuenberger, M. 1992. PhD thesis. Physics Institute, University of Bern.
    • Leuenberger, M., Siegenthaler, U. and Langway, C. C. 1992. Carbon isotope composition of atmospheric CO2 during the last ice age from an Antarctic ice core. Nature 357, 488-490.
    • Leuenberger, M., Francey, R. J., Etheridge, D. M., Allison, C. E. and Enting, I. G. 1993. High precision d13C and CO2 concentration measurements from a high time resolution Antarctic ice core. In: Extended abstracts of the 4th International CO2 Conference, Carqueiranne, France, 13-17 September 1993. World Meteorological Organization, WMO/TD-NO 561.
    • Levchenko, V. A., Francey, R. J., Etheridge, D. M., Tuniz, C., Head, J., Morgan, V. I., Lawson, E. and Jacobsen, G. 1996. The 14C ''bomb spike'' determines the age spread and age of CO2 in Law Dome firn and ice. Geophys. Res. L ett. 23, 3345-3348.
    • Levchenko, V. A., Etheridge, D. M., Francey R. J., Trudinger, C. Tuniz, C., Lawson, E. M., Smith, A. M., Jacobsen, G. E., Hua, Q., Hotchkis, M. A. C., Fink, D., Morgan, V. and Head, J. 1997. Measurements of the 14CO2 bomb pulse in firn and ice at Law Dome, Antarctica. Nucl. Instr. & Methods. B123, 290-295.
    • Lloyd, J. and Farquhar, G. D. 1994. 13C discrimination during CO2 assimilation by the terrestrial biosphere. Oecologia 99, 201-215.
    • Marino, B. D and McElroy, M. B. 1991. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 349, 127-131.
    • Mook, W. G., Bommerson, J. C. and Staverman, W. H. 1974. Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth and Planetary Science L etters 22, 169-176.
    • Mook, W. M. and Van der Hoek, S. 1983. The N2O correction in the carbon and oxygen isotopic analysis of atmospheric CO2. Isotope Geoscience 1, 237-242.
    • Morgan, V. I., Wookey, C. W., Li, J., van Ommen, T. D., Skinner, W. and Fitzpatrick, M. F. 1997. Site information and initial results from deep ice drilling on Law Dome. J. Glaciol. 43, 3-10.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1993a. Time and space variations of carbon isotopic ratio of tropospheric carbon dioxide over Japan. T ellus 45B, 258-274.
    • Nakazawa, T., Machida, T., Tanaka, M., Fujii, Y., Aoki, S. and Wanatabe, O. 1993b. Atmospheric CO2 concentrations and carbon isotope ratios for the last 250 years deduced from an Antarctic ice core, H15. In: Extended abstracts of the 4th International CO2 Conference, Carqueiranne, France, 13-17 September 1993. World Meteorological Organization, WMO/ TD-NO 561.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1997. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region. J. Geophys. Res. 102, D1, 1271-1285.
    • Nozaki, Y., Rye, D. M., Turekian, K. K. and Dodge, R. E. 1978. A 200 year record of carbon-13 and carbon-14 variations in a Bermuda coral. Geophys. Res. L ett. 5, 825-828.
    • Pearman, G. I. and Hyson, P. 1986. Global transport and inter-reservoir exchange of carbon dioxide with particular reference to stable carbon isotopic distributions. J. Atmos. Chem. 4, 81-124.
    • Schwander, J. 1989. The transformation of snow to ice and the occlusion of gases. In: T he environmental record in glaciers and ice sheets (H. Oeschger and C. C. Langway Jr., eds.). Dahlem Workshop Report, John Wiley, Chichester, pp. 53-67.
    • Severinghaus, J. P., Sowers, T., Brook, E. J., Alley, R. B. and Bender, M. L. 1998. Timing of abrupt climate change at the end of the Younger Dryas interval from thermally fractionated gases in polar ice. Nature 391, 141-146.
    • Siegenthaler, U. and Oeschger, H. 1987. Biospheric CO2 emissions during the past 200 years reconstructed by deconvolution of ice core data. T ellus 39B, 140-154.
    • Siegenthaler, U., Friedli, H., Loetscher, H., Moor, E., Neftel, A., Oeschger, H. and StauVer, B. 1988. Stable isotope ratios and concentrations of CO2 in air from Polar ice cores. Ann. Glaciol. 10, 151-156.
    • Stuiver, M. 1978. Atmospheric CO2 increases related to carbon reservoir changes. Science 199, 253-258.
    • Stuiver, M., Burk, R. L. and Quay, P. D. 1984. 13C/12C ratios and the transfer of biospheric carbon to the atmosphere. J. Geophys. Res. 89, 1731-1748.
    • Tans, P. P. 1981. 13C/12C of industrial CO2. In: Carbon cycle modelling. SCOPE 16 (B. Bolin, ed.). John Wiley and Son, Chichester, pp. 127-129.
    • Trolier, M., White, J. W. C., Tans, P. P., Masarie, K. A. and Gemery, P. A. 1996. Monitoring the isotopic composition of atmospheric CO2: measurements from the NOAA global sampling network. J. Geophys. Res. 101, D20, 25,897-25,916.
    • Trudinger, C. M., Enting, I. G., Etheridge, D. M., Francey, R. J., Levchenko, V. A., Steele, L. P., Raynaud, D. and Arnaud, L. 1997. Modelling air movement and bubble trapping in firn. J. Geophys. Res. 102, D6, 6747-6763.
    • Trudinger C. M., Enting, I. G., Francey, R. J. and Etheridge, D. M (1999). Long term variability in the global carbon cycle inferred from a high precision CO2 and d13C ice core record. T ellus, 51B, 233-248.
    • Whorf, T. P., Keeling, C. D. and Wahlen, D. M. 1993. Recent interannual variations in CO2 in both hemispheres. In: Climate modelling and diagnostics laboratory summary report no. 21, 1992 (J. T. Peterson and R. M. Rosson, eds.). US Department of Commerce NOAA, Boulder, pp 119-122.
    • White, J. W. C, Ciais, P., Figge, R. A., Kenny, R. and Markgraf, V. 1994. A high resolution record of atmospheric CO2 content from carbon isotopes in peat. Nature 367, 153-156.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from