LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yu, Ying; Funk, Colin D. (2006)
Publisher: Co-Action Publishing
Journal: Food & Nutrition Research
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: lipids (amino acids, peptides, and proteins)
Eicosanoids are lipid mediators consisting of prostaglandins, leukotrienes, lipoxins and related compounds derived primarily from arachidonic acid and to a lesser extent from eicosapentaenoic and di-homo-gammalinolenic acids. This large class of bioactive lipids is derived from the initial release of polyunsaturated fatty acid from the sn2 position of glycerophospholipids predominantly from cytosolic phospholipase A2 and subsequent conversion by either prostaglandin H synthases-1 and -2 (PGHS-1, PGHS-2; also known as COX- 1, COX-2), lipoxygenases or various members of the cytochrome P450 family. Eicosanoids control a vast array of physiological functions, including female reproductive function and parturition, platelet aggregation and vascular homeostasis, as well as renal function and roles in inflammation initiation and resolution. The authors have been studying the functions and signaling of eicosanoids, in particular the prostaglandin class of molecules, using a series of induced mutant mouse strains created in the laboratory by manipulation of the PGHS-1 and PGHS-2 genes by gene targeting in embryonic stem cells. The two strains of mice most fully characterized to date are referred to as ‘‘low-dose aspirin genetic mimic’’ or PGHS-1 knockdown and ‘‘selective COX-2 inhibitor genetic mimic’’ or PGHS-2 Y385F. This brief review describes the utility of these mouse models for unraveling new insights into eicosanoid signaling. Keywords: aspirin; cardiovascular; coxib; inflammation; prostaglandin

Share - Bookmark

Funded by projects

Cite this article

Collected from