Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lehmann, A.; Krauss, W.; Hinrichsen, H.-H. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Due to the ephemeral nature of the atmospheric conditions over the Baltic Sea, the flow fieldis highly variable, and thus, changes in the resulting circulation and upwelling are difficult toobserve. However, three-dimensional models, forced by realistic atmospheric conditions andriver runoff, have reached such a state of accuracy that the highly fluctuating current field andthe associated evolution of the temperature and salinity field can be described. In this work,effects of remote and local atmospheric forcing on circulation and upwelling in the Baltic Seaare investigated. Changes in the characteristics of the large-scale atmospheric wind field overthe central and eastern North Atlantic can be described by the North Atlantic Oscillation(NAO). The NAO is related to the strength and geographical position of weather systems asthey cross the North Atlantic and thus has a direct impact on the climate in Europe. To relatethe local wind field over the Baltic Sea to the large-scale atmospheric circulation, we defined aBaltic Sea Index (BSI), which is the difference of normalised sea level pressures between Osloin Norway and Szczecin in Poland. The NAO is significantly related to the BSI. Furthermore,the BSI is highly correlated with the storage variation of the Baltic Sea and the volume exchangethrough the Danish Sounds. Based on three-dimensional model calculations, it is shown thatdifferent phases of the NAO during winter result in major changes of horizontal transports inthe deep basins of the Baltic Sea and in upwelling along the coasts as well as in the interior ofthe basins. During NAO+ phases, strong Ekman currents are produced with increased up- anddownwelling along the coasts and associated coastal jets, whereas during NAO− phases, Ekmandrift and upwelling are strongly reduced, and the flow field can almost entirely be described bythe barotropic stream function. The general nature of the mean circulation in the deep basinsof the Baltic Sea, obtained from a 10-yr model run, can be described by the depth integratedvorticity balance derived from the transport equation for variable depth.DOI: 10.1034/j.1600-0870.2002.00289.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bergstr o¨m, S. and Carlsson, B. 1994. River runoff to the Baltic Sea: 1950-1990. Ambio 23, 280-287.
    • Csanady, G. T. 1982. Circulation in the coastal ocean. D. Reidel, Dordrecht, The Netherlands. 279 pp.
    • Dietrich, G. 1951. Oberfla¨chenstr o¨mungen im Kattegat, im Sund und in der Beltsee. Deutsche Hydrogr. Z. 4, 129-150.
    • Dietrich, G. and Schott, F. 1974. Wasserhaushalt und Str o¨mungen. In: Meereskunde der Ostsee (eds. L. Maagard and G. Rheinheimer), Springer-Verlag Berlin, 33-41.
    • Eilola, K. and Stigebrandt, A. 1998. Spreading of juvenile freshwater in the Baltic Proper. J. Geophys. Res. 103, C12, 27,795-27,807.
    • Elken, J. 1996. Circulation modelling. In: Deep water overflow, circulation and vertical exchange in the Baltic proper (ed. J. Elken), Estonian Marine Institute, Tallin, Estonia, Rep. Ser., 6, 91 pp.
    • Fennel, W. 1991. Rosby radii and phase speeds in the Baltic Sea. Cont. Shelf Res. 11, 23-36.
    • Gidhagen, L. 1987. Coastal upwelling in the Baltic Sea. Satellite and in situ measurements of sea surface temperatures indicating coastal upwelling. Estuarine, Coastal and Shelf Sci. 24, 449-462.
    • Gustafsson, B. 1997. Interaction between Baltic Sea and North Sea. Germ. J. Hydrogr. 49, 165-183.
    • Gustafsson, B. and Stigebrandt, A. 1996. Dynamics of the freshwater-influenced surface layers in the Skagerrak. J. Sea Res. 35, 39-53.
    • Haapala, J. and Leppa¨ranta, M. 1996. Simulating the Baltic Sea ice season with a coupled ice-ocean model, T ellus 48A, 622-643.
    • Ha¨nninen, J., Vuorinen, I. and Hjelt, P. 2000. Climatic factors in the Atlantic control the oceanographic an ecological changes in the Baltic Sea. L imnol. Oceanogr. 45, 703-710.
    • Hagedorn, R., Lehmann, A. and Jacob, D. 2000. A coupled high resolution atmosphere-ocean model for the BALTEX region. Meteor. Z. 1, 1-14.
    • Harder, M., 1996. Dynamik, Rauhigkeit und Alter des Meereises in der Arktis -Numerische Untersuchungen mit einem grobskaligen Modell, Ber. zur Polarforsch. 203, Alfred-Wegener-Institut f u¨r Polar- und Meeresforschung, Bremerhaven, Germany.
    • HELCOM, 1986. Baltic Marine Environment Protection Commission - Helsinki Commission, 1986, Baltic Sea Environment Proceedings No. 16, Helsinki, Finland, 174 pp.
    • Hibler, W. D. 1979. A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815-846.
    • Hilmer, M. and Jung, T. 2000. Evidence for a recent change in the link between the North Atlantic Oscillation and Arctic sea ice export. Geophys. Res. L ett. 27, 989-992.
    • Hinrichsen, H.-H., Lehmann, A., St. John, M. A. and Bru¨ gge, B. 1997. Modeling the cod larvae drift in the Bornholm Basin in summer 1994. Cont. Shelf Res. 17, 1765-1784.
    • Hinrichsen, H.-H., B o¨ttcher, U., Oeberst, R., Voss, R. and Lehmann, A. 2001a. The potential of advective exchange between the western and eastern Baltic cod stock early life stages. Fish. Oceanogr. 10, 249-258.
    • Hinrichsen, H.-H., St.John, M. A., Aro, E., Gronkjr, P. and Voss, R. 2001b. Testing the larval drift hypothesis in the Baltic Sea: retention vs. dispersion due to the influence of the wind driven circulation. ICES Mar. Sci. Symp. 58, 973-984.
    • Hurrell, J. W. 1995. Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269, 676-679.
    • Hurrell, J. W. 1996. Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature. Geophys. Res. L ett. 23, 665-668.
    • Hurrell, J. W. and van Loon, H. 1997. Decadal variations in climate associated with the North Atlantic Oscillation. Climate Change 36, 301-326.
    • Jacobsen, T. S. 1981. The physical oceanography of the open Danish water. In: T he Belt Project: evaluation of the physical, chemical and biological measurements (ed. G. Aetebjerg Nielsen), National Agency of Environmental Protection, Denmark, 122 pp.
    • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437-470.
    • Kielmann, J. 1981. Grundlagen und Anwendung eines numerischen Modells der geschichteten Ostsee. Ber. Inst. f u¨r Meeresk, Kiel, No. 87a/b, 158/116 pp.
    • Killworth, P., Stainforth, D., Webbs, D. J., Paterson, S. M. 1989. A free surface Bryan-Cox-Semtner model. Inst. Oceanogr. Sci. Deacon L ab. Rep., No. 270, 184 pp.
    • Killworth, P., Stainforth, D., Webbs, D. J. and Paterson, S. M. 1991. The development of a free-surface BryanCox-Semtner ocean model. J. Phys. Oceanogr. 21, 1333-1348.
    • Koslowsky, G. and Loewe, P. 1994. The western Baltic Sea ice season in term of mass related severity index 1879-1992. Part I: temporal variability and association with the North Atlantic Oscillation. T ellus 46A, 66-74.
    • Koslowsky, G. and Glaser, R. 1999. Variations in reconstructed ice winter severity in the western Baltic from 1501 to 1995, and their implications for the North Atlantic Oscillation. Climate Change 41, 175-191.
    • Kullenberg, G. 1981. Physical oceanography. In: T he Baltic Sea. (ed. A. Voipo) Elsevier Oceanogr. Ser. 30, 135-182.
    • Lass, H. U. and Mattha¨us, W. 1996. On temporal wind variations forcing salt water inflows into the Baltic Sea. T ellus 48A, 663-671.
    • Lass, H. U. and Schwabe, R. 1990. An analysis of the salt water inflow into the Baltic in 1975 to 1976. Dt. Hydrogr. Z. 43, 97-125.
    • Lehmann, A. 1995. A three-dimensional baroclinic eddyresolving model of the Baltic Sea. T ellus 47A, 1013-1031.
    • Lehmann, A. and Hinrichsen, H.-H. 2000a. On the thermohaline variability of the Baltic Sea. J. Mar. Sys. 25, 333-357.
    • Lehmann, A. and Hinrichsen, H.-H. 2000b. On the wind driven and thermohaline circulation of the Baltic Sea. Phys. Chem. Earth, B 25, 183-189.
    • Lehmann, A. and Hinrichsen, H.-H. 2001. The importance of water storage variations for water balance studies of the Baltic Sea. Phys. Chem. Earth, B 26, (5-6), 383-389.
    • Lisitzin, E. 1974. Sea-level changes. Elsevier Oceanogr. Ser. 8, 286.
    • Mattha¨us, W. and Schinke, H. 1994. Mean atmospheric circulation patterns associated with Major Baltic Inflows. Dt. hydrogr. Z. 46, 321-338.
    • Meier, H. E. M. 1999. First results of multi-year simulations using a 3D Baltic Sea model. Rep. Oceanogr. 27, SMHI, S-60176 Norrk o¨ping, Sweden, 48 pp.
    • Meier, H. E. M. 2000. The use of a k-e turbulence model within the Rossby Centre regional ocean climate model: Parameterization, development and results. Rep. Oceanogr. 28, SMHI, S-60176 Norrk o¨ping, Sweden, 81 pp. Sea model. Reports Oceanogr. 27, SMHI, S-60176 Norrk o¨ping, Sweden, 48 pp.
    • Neumann, G. and Pierson, W. J. 1967. Principles of physical oceanography. Prentice-Hall Int., London, 545 pp.
    • Omstedt, A. and Chen, D. 2001. Influence of atmospheric circulation on the maximum ice extent in the Baltic Sea. J. Geophys. Res. 106, 4493-4500.
    • Omstedt, A., Meuller, L. and Nyberg, L. 1997. Interannual, seasonal and regional variations of precipitation and evaporation over the Baltic Sea. Ambio 26, 484-492.
    • Osborn, T. J., Briffa, K. R., Tett, S. F. B. and Jones, P. D. 1999. Evaluation of the North Atlantic Oscillation as simulated by a coupled climate model. Clim. Dyam. 15, 685-702.
    • Parkinson, C. L. and Washington, W. M. 1979. A largescale numerical model of sea ice. J. Geophys. Res. 84, 311-337.
    • Planque, B. and Taylor, A. H. 1998. Long-term changes in plankton and the climate of the North Atlantic. ICES J. Mar. Sci. 78, 1015-1018.
    • Rogers, J. C. 1984. The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere. Mon. Weather Rev. 112, 1999-2015.
    • Rodhe, J. 1996. On the dynamics of the large-scale circulation of the Skagerrak. J. Sea Res. 35, 9-21.
    • Samuelsson, M. and Stigebrandt, A. 1996. Main characteristics of the long-term sea level variability in the Baltic Sea. T ellus 48A, 672-683.
    • Sarkisyan, A. S., Staskwiecz, A. and Koalik, Z. 1975. Diagnostic computations of the summer circulation in the Baltic Sea. Oceanologica 15, 653-656
    • Schinke, H. and Mattha¨us, W. 1998. On the causes of major Baltic inflows an analysis of long time series. Cont. Shelf Res. 18, 67-97.
    • Schrum, C. and Backhaus, J. O. 1999. Sensitivity of atmosphere-ocean heat exchange and heat content in North and Baltic Sea. A comparative assessment. T ellus 51A, 526-549.
    • Simons, T. J. 1978. Wind-driven circulations in the southwest Baltic. T ellus 30, 272-283.
    • Sj o¨berg, B. 1992. Sea and coast, national atlas of Sweden, SMHI Norrko¨ping. SNA Publishing, 128 pp.
    • Stigebrandt, A. 1983. A model for the exchange of water and salt between Baltic and the Skagerrak. J. Phys. Oceanogr. 13, 411-427.
    • St o¨ssel, A. and Owens, W. B. 1992. T he Hamburg sea-ice model. DKRZ Techn. Rep. No. 3.
    • Ulbrich, U. and Christoph, M. 1999. A shift of the NAO and increasing storm track activity over Europe due to anthropagenic green house gas forcing. Clim. Dynam. 15, 551-559.
    • Voss, R., Hinrichsen, H.-H. and St.John, M. A. 1999. Variations in the drift of larval cod (Gadus morhua L.) in the Baltic Sea: combining field observations and modeling. Fish. Oceanogr. 8, 199-211.
    • Zorita, E. and Laine, A. 2000. Dependence of salinity and oxygen concentrations in the Baltic Sea on largescale atmospheric circulation. Clim. Res. 14, 25-41.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
  • No similar publications.

Share - Bookmark

Cite this article

Collected from