LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Petit, J. R.; Delmonte, B. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
A semi-empirical model has been developed to reproduce glacial–interglacial changes of continental dust and marine sodium concentrations (factor of ∼50 and ∼5, respectively) observed in inland Antarctic ice cores. The model uses conceptual pathways of aerosols within the high troposphere; assumes the dry deposition of impurities on the Antarctic surface; uses estimates of aerosol transit times taken independent of climate; assumes a temperature-dependent removal process during aerosol pathways from the mid-latitudes. The model is fitted to the data over the last four climate cycles from Vostok and EPICA Dome C Antarctic sites. As temperature is cooling, the aerosol response suggests different modes of climate couplings between latitudes, which can be continuous or below temperature thresholds for sodium and dust, respectively. The model estimates a southern South America dust source activity two to three times higher for glacial periods than for the Holocene and a glacial temperature over the Southern Ocean 3–5 °C cooler. Both estimates appear consistent with independent observations. After removal of temperature effects, dust and sodium residuals for both sites show orbital frequencies in opposite phase at the precession timescale. Such long-term insolation-related modulation of terrestrial and marine aerosol input, could provide a chemical pacemaker useful for refining ice core chronologies.DOI: 10.1111/j.1600-0889.2009.00437.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aitchison, J. and Brown, J. A. C. 1957. The Log Normal Distribution with Special Reference to its uses in Economics. Cambridge University, London, 176.
    • Alley, R. B., Finkel, R. C., Nishiizumi, K., Anandakrishnan, S., Shuman, C. A. and co-authors. 1995. Changes in continental sea-salt atmospheric loadings in central Greenland during the most recent deglaciation: model-based estimates. J. Glaciol. 41, 503-514.
    • Andersen, K. K., Armengaud, A. and Genthon, C. 1998. Atmospheric dust under glacial and interglacial conditions. Geophys. Res. Lett. 25, 2281-2284.
    • Balkanski, Y., Jacob, D. J., Gardner, G. M., Graustein, W. C. and Turekian, K. K. 1993. Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of 210Pb. J. Geophys. Res. 98, 20573-20586.
    • Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E. and co-authors. 1997. Patagonian origin of glacial dust deposited in East Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet. Sci. Lett. 146, 573-57.
    • Berger, A. 1978. Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci., 35, 2362-2367.
    • Bigler, M., Rothlisberger, R., Lambert, F., Stocker, T. F. and Wagenbach, D. 2006. Aerosol deposited in East Antarctica over the last glacial cycle: detailed apportionment of continental and sea-salt contributions. J. Geophys. Res. 111, D08205, doi:10.1029/2005JD006469.
    • Brathauer, U. and Abelmann, A. 1999. Late Quaternary variations in sea surface temperatures and their relationship to orbital forcing recorded in the Southern Ocean (Atlantic sector). Paleoceanography 14, 135- 148.
    • Castellano, E., Becagli, S., Jouzel, J., Migliori, A., Severi, M. and coauthors. 2004. Volcanic eruption frequency over the last 45ky as recorded in the Epica-Dome C ice core (East Antarctica) and its relationship with climatic changes. Global Planet. Change 42, 195-205.
    • Charlesworth, J. K. 1957. The Quaternary Era. Edward Arnold, London, 1700.
    • Chylek, P., Lesins, G. and Lohmann, U. 2001. Enhancement of dust source area during past glacial periods due to changes of the Hadley circulation. J. Geophys. Res., 106, 18477-18485.
    • Cruz Jr., F. W., Burns, S. J., Karmann, I., Sharp, W. D., Vuille, M. and co-authors. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 434, 63-66.
    • Cunningham, W. C. and Zoller, W. H. 1981. The chemical composition of remote area aerosols. J. Aerosol Sci. 12, 367-384.
    • Curran, M., Wong, G., Goodwin, I., van Ommen, T. and Vance, T. 2008. Estimate of sea salt sources to Antarctica: an alternative interpretation of the EPICA sea salt record? Geophys. Res. Abstr., 10, A07581.
    • Delmonte, B., Petit, J. R. and Maggi, V. 2002. Glacial to Holocene implications of the new 27,000 year dust record from the EPICA Dome C (East Antarctica) ice core. Clim. Dyn. 18, 647-660.
    • Delmonte, B., Petit, J. R., Andersen, K. K., Basile-Doelsch, I., Maggi, V. and co-authors. 2004a. Opposite regional atmospheric circulation changes over east Antarctica during the last climatic transition evidenced by dust size distributions changes. Clim. Dyn., 23, 427-438, doi:10.1007/s00382-004-0450-9.
    • Delmonte, B., Basile-Doelsch, I., Petit, J. R., Maggi, V., RevelRolland, M. and co-authors. 2004b. Comparing the EPICA and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods. Earth Sci. Rev. 66, 63-87.
    • Dreyfus, G. B., Parrenin, F., Lemieux-Dudon, B., Durand, G., MassonDelmotte, V. and co-authors. 2007. Anomalous flow below 2700 m in the EPICA Dome C ice core detected using δ18O of atmospheric oxygen measurements. Clim. Past - CPD 3, 341- 353.
    • EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429, 623-628.
    • EPICA Community Members. 2006. One-to-one coupling of polar climate variability. Nature 444, 195-198.
    • Fischer, H., Sigaard-Andersen, M. L., Ruth, U., Rothlisberger, R. and Wolff, E. 2007a. Glacial/interglacial changes in mineral dust and seasalt records in polar ice cores: sources, transport and deposition. Rev. Geophys. 45, RG1002/2007, 1-26.
    • Fischer, H., Fundel, F., Ruth, U., Twarloh, B., Wegner, A. and co-authors. 2007b. Reconstruction of millennial changes in dust emission, transport and regional sea ice coverage using the deep EPICA ice cores from the Atlantic and Indian Ocean sector of Antarctica. Earth Planet. Sci. Lett. 260, 340-354.
    • Franois, R., Altabet, M. A., Yu, E. F., Sigman, D. M., Bacon, M. P., Frank, M. and co-authors. 1997. Contribution of Southern Ocean surfacewater stratification to low atmospheric CO2 concentrations during the last glacial period. Nature 389, 929-935, doi:10.1038/40073.
    • Fritz, S. C., Baker, P. A., Lowenstein, T. K., Seltzer, G. O., Rigsby, C. A. and co-authors. 2004. Hydrologic variation during the last 170,000 years in the southern hemisphere tropics of South America. Quater. Res. 61, 95-104.
    • Fuhrer, K., Wolff, E. W. and Johnsen, S. J. 1999. Timescales for dust variability in the Greenland Ice Core Project (GRIP) ice core in the 100,000 years. J. Geophys. Res. 104, 31043-31052, doi:10.1029/1999JD900929.
    • Gaiero, D. M. 2007. Dust provenance in Antarctic ice during glacial periods: From where in southern South America? Geophys. Res. Lett. 34, L17707, doi:10.1029/2007GL030520.
    • Genthon, C. 1992. Simulations of desert dust and sea-salt aerosols in Antarctica with a general circulation model of the atmosphere. Tellus 44B, 371-389.
    • Genthon, C. and Armengaud, A. 1995. Radon 222 as a comparative tracer of transport and mixing in two general circulation models of the atmosphere. J. Geophys. Res. 100, 2849-2866.
    • Hansson, M. 1995. Are changes in atmospheric cleansing responsible for observed variations of impurity concentrations in ice cores? Ann. Glaciol. 21, 219-22.
    • Hansson, M. 1996. Atmospheric residence times influence on tracer concentrations in remote polar areas. In: Chemical Exchange between the Atmosphere and Polar Snow (eds E. Wolff and R. Bales). SpringerVerlag, Berlin Heidelberg, 582-585.
    • Hara, K., Osada, K., Kido, M., Hayashi, M., Matsunaga, K. and coauthors. 2004. Chemistry of sea-salt particles and inorganic halogen species in Antarctic regions: compositional differences between coastal and inland stations. J. Geophys. Res. 109, D20208, doi:10.1029/2004JD004713.
    • Hoskins, B. and Pearce, R. (ed). 1983. Large-scale Dynamical Processes in the Atmosphere, Academic Press, London, 397.
    • IPCC. 2007. Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, and co-editors). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Jacob, D. J., Prather, M. J., Boville, B. A., Rasch, P. J., Feichter, J. and co-authors. 1997. Intercomparison of convective and synoptic transport in global models using 222Rn and other tracers. J. Geophys. Res. 102, 5953-5970.
    • Jourdain, B., Preunkert, S., Cerri, O., Castebrunet, H., Udisti, R. and co-authors. 2008. Year-round record of size-segregated aerosol composition in central Antarctica (Concordia station): implications for the degree of fractionation of sea-salt particles. J. Geophys. Res. 113, D14308, doi:10.1029/2007JD009584.
    • Joussaume, S. 1989. Desert dust and climate: an investigation using an atmospheric general circulation model. In: Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport. (eds M. Leinen and M. Sarnthein) NATO Workshop, 253- 263.
    • Jouzel, J., Lorius, C., Petit, J. R., Genthon, C., Barkov, N. I. and coauthors. 1987. Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 402- 408.
    • Jouzel, J., Benoist, J. P., Yiou, F., Lorius, C., Raynaud, D. and co-authors. 1989. A comparison of deep Antarctic ice cores and their implications for climate between 65,000 and 15,000 years ago. Quater. Res. 31, 135-150.
    • Jouzel, J., Vaikmae, R., Petit, J. R., Martin, M., Duclos, Y. and coauthors. 1995. The two-step shape and timing of the last deglaciation in Antarctica. Clim. Dyn. 11, 151-161.
    • Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S. and co-authors. 2007. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 793-796, doi:10.1126/science.1141038.
    • Junge, C. E. 1963. Air Chemistry and Radioactivity. Academic Press, New York, 382.
    • Kohfeld, K. and Harrison, S. P. 2001. DIRTMAP: the geological record of dust. Earth Sci. Rev. 54, 81-114.
    • Krinner, G. and Genthon, C. 1998. GCM simulations of the Last Glacial Maximum surface climate of Greenland and Antarctica. Clim. Dyn. 14, 741-758.
    • Krinner, G. and Genthon, C. 2003. Tropospheric transport of continental tracers towards Antarctica under varying climatic conditions. Tellus 55B, 54-70.
    • Kumar, N., Anderson, R. F., Mortlock, R. A., Froelich, P. N., Kubik, P. and co-authors. 1995. Increased biological productivity and export production in the glacial Southern Ocean. Nature 378, 675- 680.
    • Lambert, G., Polian, G. and Taupin, D. 1970. Existence of periodicity in radon concentrations and in the large-scale circulation at latitudes between 40◦ and 70◦ south. J. Geophys. Res. 75, 2341-2345.
    • Lambert, F., Delmonte, B. Petit, J. R., Bigler, M., Kaufmann, P. R. and co-authors. 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616-619.
    • Lamy, F., Hebbeln, D. and Wefer, G. 1998. Late Quaternary processional cycles of terrigenous sediment input off the Norte Chico, Chile (27. 5◦S) and paleoclimatic implications. Palaeogeog. Palaeoclim. Palaeoecol. 141, 233-251.
    • Lamy, F., Kaiser, J., Ninnemann, N., Hebbeln, D., Arz, H. W. and co-authors. 2004. Antarctic timing of surface water changes off Chile and Patagonian ice sheet response. Science 304, 1959- 1962.
    • Lea, D., Pak, D. K., Peterson, I. C. and Hughen, K. 2003. Synchroneity of tropical and high latitude temperature over the last glacial termination. Science 301, 136-1364.
    • Legrand, M. and Delmas, R. 1988. Formation of HCl in the Antarctic atmosphere. J. Geophys. Res. 93, 7153-7168.
    • Legrand, M. and Kirchner, S. 1988. Polar atmospheric circulation and chemistry of recent (1957-1983) south polar precipitation. Geophys. Res. Lett. 15, 879-882.
    • Legrand, M. and Mayewski P. 1997. Glaciochemistry of polar ice cores: a review. Rev. Geophys. 35, 219-243.
    • Legrand, M., Lorius, C., Barkov, N. I. and Petrov, V. N. 1988. Atmospheric chemistry changes over the last climatic cycle (160,000 yr) from Antarctic ice. Atmos. Environ. 22, 317-331.
    • Li, F., Ginoux, P. and Ramaswamy, V. 2008. Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: contribution of major sources. J. Geophys. Res. 113, D10207, doi:10.1029/2007JD009190.
    • Lorius, C., Jouzel, J., Raynaud, D., Hansen, J. and Le Treut, H. 1990. Greenhouse warming, climate sensitivity and ice core data. Nature 347, 139-145.
    • Lunt, D. J. and Valdes P. J. 2001. Dust transport to Dome C, Antarctica, at the last glacial maximum and at the present day. Geophys. Res. Lett. 28, 295-298.
    • Maenhaut, W., Zoller, W. H. and Coles, D. G. 1979. Radionuclides in the South Pole atmosphere. J. Geophys. Res. 84, 3131- 3138.
    • Mahowald, N., Kohfeld, K., Hansson, M., Balkanski, Y., Harrison, S. P. and co-authors. 1999. Dust sources and deposition during the Last Glacial Maximum and current climate: a comparison of model results with paleodata from ice cores and marine sediments. J. Geophys. Res. 104, 15895-15916.
    • Mahowald, N. M., Muhs, D. R., Levis, S., Rasch, P. J., Yoshioka, M. and co-authors. 2006. Change in atmospheric mineral aerosols in response to climate: last glacial period, preindustrial, modern, and doubled carbon dioxide climates, J. Geophys. Res. 111, D10202, doi:10.1029/2005JD006653.
    • Martin, J. H. 1990. Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1-13.
    • Mart´ınez-Garcia, A., Rosell-Mele´, A., Geibert, W., Masque´, P., Gersonde, R. and co-authors. 2008. Links between iron supply, marine productivity, sea surface temperature and CO2 over the last 1.1 Myr. Paleoceanography 24, PA1207, doi:10.1029/2008PA001657.
    • Minikin, A., Legrand, M., Hall, B. L., Wagenbach, D., Kleefeld, C. and co-authors. 1998. Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. J. Geophys. Res., 103, 10927-10934.
    • Narcisi, B., Petit, J. R., Delmonte, B., Basile-Doelsch, I. and Maggi V. 2005. Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): implications for past atmospheric circulation and ice core stratigraphic correlations. Earth Planet. Sci. Lett. 239, 253-265.
    • Noone, D. and Simmonds, I. 2002. Annular variation in moisture transport mechanisms and abundance of δ18O in Antarctic snow. J. Geophys. Res. 107, 4742. doi:10.1029/2002JD002262.
    • North GRIP Community Members. 2004. High resolution climate record of the northern hemisphere reaching into last interglacial period. Nature 431, 147-151.
    • Pahnke, K. and Zahn, R. 2005. Southern Hemisphere water mass conversion linked with North Atlantic climate variability. Science 307, 1741-1746, doi:10.1126/science.1102163.
    • Paillard, D., Labeyrie, L. D. and Yiou, P. 1996. Macintosh program performs time-series analysis. EOS Trans. Am Geophys. Un. 77, 379.
    • Parrenin, F., Jouzel, J., Welbroeck, C., Ritz, C. and Barnola, J. M. 2001. Dating the Vostok ice core by an inverse method. J. Geophys. Res. 106, 31837-31851.
    • Parrenin, F., Barnola, J.-M., Beer, J., Blunier, T., Castellano, E. and co-authors. 2007. The EDC3 chronology for the EPICA Dome C ice core. Clim. Past 3, 485-497.
    • Petit, J. R., Briat, M. and Royer, A. 1981. Ice Age aerosol content from East Antarctic ice core samples and past wind strength. Nature 293, 391-394.
    • Petit, J. R., Mounier, L., Jouzel, J. and Korotkevich Y. S. 1990. Paleoclimatological and chronological implications of the Vostok core dust record. Nature 343, 56-58.
    • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J. M. and co-authors. 1999. Climate and atmospheric history of the past 420000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
    • Pye, K. 1987. Aeolian Dust and Dust Deposits. Academic Press. London, 334.
    • Ramonet, M., Le Roulley, J. C., Bousquet, P. and Monfray, P. 1996. Radon-222 measurements during the Tropoz II campaign and comparison with a global atmospheric transport model. J. Atmos. Chem. 23, 107- 136.
    • Rankin, A. M., Wolff, E. W. and Martin, S. 2002. Frost flowers: implications for tropospheric chemistry and ice core interpretation. J. Geophys. Res. 107, 4683, doi:10.1029/2002JD002492.
    • Raynaud, D., Jouzel, J., Barnola, J. M., Chappellaz, J., Delmas, R. J. and co-authors. 1993. The ice record of greenhouse gases. Science 259, 926-933.
    • Raynaud, D., Lipenkov, V., Lemieux-Dudon, B., Duval, P., Loutre, M. F. and Lhomme N. 2007. The local insolation signature of air content in Antarctic ice:a new step toward an absolute dating of ice records. Earth Planet. Sci. Lett. 261, 337-349.
    • Reijmer, C. H., Van Den Broeke, M. R. and Scheele, M. P. 2002. Air parcel trajectories and snowfall related to five deep drilling locations in Antarctica based on the ERA-15 Dataset. J. Clim. 15, 1957- 1968.
    • Ritz, C. 1992. Un mode`le thermo-me´canique d'evolution pour le basin glaciaire antarctique Vostok-glacier Byrd: sensibilite´ aux valeurs des parame`tres mal connus. Thesis, Univ. Joseph Fourier Grenoble 1, France.
    • Ruth, U., Wagenbach, D., Steffensen, J. P. and Bigler, M. 2003. Continuous record of microparticle concentration and size distribution in the central Greenland NGRIP ice core during the last glacial period. J. Geophys. Res. 108, 4098-4110.
    • Schwander, J., Jouzel, J., Hammer, C. U., Petit, J. R. and co-authors. 2001. A tentative chronology for the Epica Dome C Concordia ice recor. Geophys. Res. Lett. 28, 4243-4246.
    • Schwerdtfeger, W. 1984. Weather and Climate in the Antarctic. Elsevier Science, Amsterdam, 261.
    • Steffensen, J. P. 1997. The size distribution of microparticles from selected segments of the GRIP ice core representing different climatic periods. J. Geophys. Res. 102, 26755-26763.
    • Stenni, B., Masson-Delmotte, V., Johnsen, S., Jouzel, J., Longinelli, A. and co-authors. 2002. An oceanic cold reversal during the last deglaciation. Science 293, 2074-2077.
    • Stocker, T., Johnsen, S. and Anandakrishnan, S. 2003. A minimum thermodynamic model of the bipolar seesaw. Paleoceanography 18, doi:10.1029/2003PA000920.
    • Stute, M., Forster, M., Frischkorn, H., Serejo, A. Clark, J. F. and coauthors. 1995. Cooling of Tropical Brazil (5◦C) during the last glacial maximum. Science 269, 379-383.
    • Tuncel, G., Aras, N. K. and Zoller, W. H. 1989. Temporal variations and sources of elements in the South Pole atmosphere 1. Nonenriched and moderately enriched elements. J. Geophys. Res. 94, 13025- 13038.
    • Watanabe, O., Jouzel, J., Johnsen, S., Parrenin, F., Shoji, H. and co-authors. 2003. Homogeneous climate variability across East Antarctica over the past three glacial cycles. Nature 422, 509- 512.
    • Werner, M., Tegen, I., Harrison, S., Kohfeld, K., Prentice, I. C. and co-authors. 2002. Seasonal and interannual variability of the mineral dust cycle under present and glacial climate conditions. J. Geophys. Res. 107, 4744, doi:10.1029/2002JD002365.
    • Winckler, G., Anderson, R. F., Fleisher, M. Q., McGee, D. and Mahowald, N. 2008. Covariant glacial-interglacial dust fluxes in the equatorial Pacific and Antarctica. Science 320, 93-96, doi:10.1126/science.1150595.
    • Wolff, E. W., Rankin, A. M. and Rothlisberger, R. 2003. An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett. 30, 2158, doi:10.1029/2003GL018454.
    • Wolff, E. W., Fischer, H., Fundel, F., Ruth, U., Twarloh, B. and co-authors. 2006. Southern Ocean sea-ice extent, productivity and iron flux over the past eight glacial cycles. Nature 440, doi:10.1038/nature04614.
    • Yung, Y. L., Lee, T., Wang, C. H. and Shieh, Y. T. 1996. Dust: a diagnostic of the hydrologic cycle during the Last Glacial Maximum. Science 271, 962-963.
    • Zdanowicz, C., Hall, G., Vaive, J., Amelin, Y., Percival, J. and co-authors. 2006. Asian dust fall in the St Elias Mountains,Yukon, Canada. Geochem. Cosmochem. Acta 70, 3493-3507.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from