LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pradeep, Thalappil; Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K. (2011)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects:
Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. (Published: 16 February 2011) Citation: Nano Reviews 2011, 2: 5883 - DOI: 10.3402/nano.v2i0.5883
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Wang H, Brandl DW, Nordlander P, Halas NJ. Plasmonic nanostructures: artificial molecules. Acc Chem Res 2007; 40: 53 62.
    • 2. Burda C, Chen X, Narayanan R, El-Sayed MA. Chemistry and properties of nanocrystals of different shapes. Chem Rev 2005; 105: 1025 102.
    • 3. El-Sayed MA. Small is different. Shape-, size-, and compositiondependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 2004; 37: 326 33.
    • 4. Alivisatos AP. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 1996; 100: 13226 39.
    • 5. Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small 2008; 4: 310 25.
    • 6. Pileni MP. Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 2007; 111: 9019 38.
    • 7. Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 2009; 21: 4880 910.
    • 8. Daniel M-C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 2003; 104: 293 346.
    • 9. Iijima S. Helical microtubules of graphitic carbon. Nature 1991; 354: 56 8.
    • 10. Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P. Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 2005; 249: 1870 901.
    • 11. Chang S-S, Shih C-W, Chen C-D, Lai W-C, Wang CRC. The shape transition of gold nanorods. Langmuir 1999; 15: 701 9.
    • 12. Busbee BD, Obare SO, Murphy CJ. An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 2003; 15: 414 6.
    • 13. Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5 40 nm diameter gold nanoparticles. Langmuir 2001; 17: 6782 6.
    • 14. Jana NR, Gearheart L, Murphy CJ. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rodlike gold nanoparticles using a surfactant template. Adv Mater 2001; 13: 1389 93.
    • 15. Chen HM, Liu R-S, Asakura K, Jang L-Y, Lee J-F. Controlling length of gold nanowires with large-scale. X-ray absorption spectroscopy approaches to the growth process. J Phys Chem C 2007; 111: 18550 7.
    • 16. Caswell KK, Bender CM, Murphy CJ. Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 2003; 3: 667 9.
    • 17. Kim F, Sohn K, Wu J, Huang J. Chemical synthesis of gold nanowires in acidic solutions. J Am Chem Soc 2008; 130: 14442 3.
    • 18. Hunyadi SE, Murphy CJ. Bimetallic silver-gold nanowires: fabrication and use in surface-enhanced Raman scattering. J Mater Chem 2006; 16: 3929 35.
    • 19. Krichevski O, Markovich G. Growth of colloidal gold nanostars and nanowires induced by palladium doping. Langmuir 2007; 23: 1496 9.
    • 20. Zhao Q, Hou L, Huang R, Li S. Controlled growth of gold nanowhiskers via a soft chemistry method. Mater Chem Phys 2004; 85: 180 3.
    • 21. Chen J, Herricks T, Geissler M, Xia Y. Single-crystal nanowires of platinum can be synthesized by controlling the reaction rate of a polyol process. J Am Chem Soc 2004; 126: 10854 5.
    • 22. Hu J, Odom TW, Lieber CM. Chemistry and physics in one dimension: synthesis and properties of nanowires and nanotubes. Acc Chem Res 1999; 32: 435 45.
    • 23. Millstone JE, Park S, Shuford KL, Qin L, Schatz GC, Mirkin CA. Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 2005; 127: 5312 3.
    • 24. Sajanlal PR, Subramaniam C, Sasanpour P, Rashidian B, Pradeep T. Electric field enhancement and concomitant Raman spectral effects at the edges of a nanometre-thin gold mesotriangle. J Mater Chem 2010; 20: 2108 13.
    • 25. Ah CS, Yun YJ, Park HJ, Kim W-J, Ha DH, Yun WS. Sizecontrolled synthesis of machinable single crystalline gold nanoplates. Chem Mater 2005; 17: 5558 61.
    • 26. Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001; 294: 1901 3.
    • 27. Kan C, Zhu X, Wang G. Single-crystalline gold microplates: synthesis, characterization, and thermal stability. J Phys Chem B 2006; 110: 4651 6.
    • 28. Sajanlal PR, Pradeep T. Growth of anisotropic gold nanostructures on conducting glass surfaces. J Chem Sci 2008; 120: 79 85.
    • 29. Kim F, Connor S, Song H, Kuykendall T, Yang P. Platonic gold nanocrystals. Angew Chem Int Ed 2004; 43: 3673 7.
    • 30. Wang L, Chen X, Zhan J, Chai Y, Yang C, Xu L, et al. Synthesis of gold nano- and microplates in hexagonal liquid crystals. J Phys Chem B 2005; 109: 3189 94.
    • 31. Chu H-C, Kuo C-H, Huang MH. Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges. Inorg Chem 2006; 45: 808 13.
    • 32. Sun X, Dong S, Wang E. High-yield synthesis of large singlecrystalline gold nanoplates through a polyamine process. Langmuir 2005; 21: 4710 2.
    • 33. Sun X, Dong S, Wang E. Large-scale synthesis of micrometerscale single-crystalline Au plates of nanometer thickness by a wet-chemical route. Angew Chem Int Ed 2004; 43: 6360 3.
    • 34. Swami A, Kumar A, Selvakannan PR, Mandal S, Pasricha R, Sastry M. Highly oriented gold nanoribbons by the reduction of aqueous chloroaurate ions by hexadecylaniline Langmuir monolayers. Chem Mater 2003; 15: 17 9.
    • 35. Burgin J, Liu M, Guyot-Sionnest P. Dielectric sensing with deposited gold bipyramids. J Phys Chem C 2008; 112: 19279 82.
    • 36. Henzie J, Kwak E-S, Odom TW. Mesoscale metallic pyramids with nanoscale tips. Nano Lett 2005; 5: 1199 202.
    • 37. Xu Q, Tonks I, Fuerstman MJ, Love JC, Whitesides GM. Fabrication of free-standing metallic pyramidal shells. Nano Lett 2004; 4: 2509 11.
    • 38. Lee J, Hasan W, Stender CL, Odom TW. Pyramids: a platform for designing multifunctional plasmonic particles. Acc Chem Res 2008; 41: 1762 71.
    • 39. Nehl CL, Liao H, Hafner JH. Optical properties of star-shaped gold nanoparticles. Nano Lett 2006; 6: 683 8.
    • 40. Burt JL, Elechiguerra JL, Reyes-Gasga J, Montejano-Carrizales JM, Jose-Yacaman M. Beyond archimedean solids: star polyhedral gold nanocrystals. J Cryst Growth 2005; 285: 681 91.
    • 41. Hao F, Nehl CL, Hafner JH, Nordlander P. Plasmon resonances of a gold nanostar. Nano Lett 2007; 7: 729 32.
    • 42. Kumar PS, Pastoriza-Santos I, Rodriguez-Gonzalez B, de Abajo FJG, Liz-Marzan LM. Nanotechnology 2008; 19: 015606.
    • 43. Sajanlal PR, Sreeprasad TS, Nair AS, Pradeep T. Wires, plates, flowers, needles, and core-shells: diverse nanostructures of gold using polyaniline templates. Langmuir 2008; 24: 4607 14.
    • 44. Jena BK, Raj CR. Seedless, surfactantless room temperature synthesis of single crystalline fluorescent gold nanoflowers with pronounced SERS and electrocatalytic activity. Chem Mater 2008; 20: 3546 8.
    • 45. Bakshi MS, Possmayer F, Petersen NO. Role of different phospholipids in the synthesis of pearl-necklace-type goldsilver bimetallic nanoparticles as bioconjugate materials. J Phys Chem C 2007; 111: 14113 24.
    • 46. Li Y, Shi G. Electrochemical growth of two-dimensional gold nanostructures on a thin polypyrrole film modified ITO electrode. J Phys Chem B 2005; 109: 23787 93.
    • 47. Jena BK, Raj CR. Synthesis of flower-like gold nanoparticles and their electrocatalytic activity towards the oxidation of methanol and the reduction of oxygen. Langmuir 2007; 23: 4064 70.
    • 48. Wang W, Cui H. Chitosan-luminol reduced gold nanoflowers: from one-pot synthesis to morphology-dependent SPR and chemiluminescence sensing. J Phys Chem C 2008; 112: 10759 66.
    • 49. Qian L, Yang X. Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers. J Phys Chem B 2006; 110: 16672 8.
    • 50. Yang Z, Lin ZH, Tang CY, Chang HT. Preparation and characterization of flower-like gold nanomaterials and iron oxide/gold composite nanomaterials. Nanotechnology 2007; 18: 255 606.
    • 51. Yuan H, Ma W, Chen C, Zhao J, Liu J, Zhu H, et al. Shape and SPR evolution of thorny gold nanoparticles promoted by silver ions. Chem Mater 2007; 19: 1592 600.
    • 52. Hao E, Bailey RC, Schatz GC, Hupp JT, Li S. Synthesis and optical properties of ''branched'' gold nanocrystals. Nano Lett 2004; 4: 327 30.
    • 53. Chen HM, Hsin CF, Liu R-S, Lee J-F, Jang L-Y. Synthesis and characterization of multi-pod-shaped gold/silver nanostructures. J Phys Chem C 2007; 111: 5909 14.
    • 54. Bakr OM, Wunsch BH, Stellacci F. High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater 2006; 18: 3297 301.
    • 55. Chen J, Herricks T, Xia Y. Polyol synthesis of platinum nanostructures: control of morphology through the manipulation of reduction kinetics. Angew Chem 2005; 117: 2645 8.
    • 56. Kuo C-H, Huang MH. Synthesis of branched gold nanocrystals by a seeding growth approach. Langmuir 2005; 21: 2012 6.
    • 57. Liang H-P, Hu J-S, Cao A-M, Mu Y-Y, Wan L-J. Facile synthesis of Pt multipods nanocrystals. J Nanosci Nanotechnol 2006; 6: 2031 6.
    • 58. Tsuji M, Jiang P, Hikino S, Lim S, Yano R, Jang S-M, et al. Toward to branched platinum nanoparticles by polyol reduction: a role of poly(vinylpyrrolidone) molecules. Colloids Surf A 2008; 317: 23 31.
    • 59. Bakr OM, Wunsch BH, Stellacci F. High-yield synthesis of multi-branched urchin-like gold nanoparticles. Chem Mater 2006; 18: 3297 301.
    • 60. Hu J, Zhang Y, Liu B, Liu J, Zhou H, Xu Y, et al. Synthesis and properties of tadpole-shaped gold nanoparticles. J Am Chem Soc 2004; 126: 9470 1.
    • 61. Skrabalak SE, Au L, Li X, Xia Y. Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2007; 2: 2182 90.
    • 62. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, et al. Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano Lett 2005; 5: 1569 74.
    • 63. Wang H, Brandl DW, Le F, Nordlander P, Halas NJ. Nanorice: a hybrid plasmonic nanostructure. Nano Lett 2006; 6: 827 32.
    • 64. Teranishi T, Inoue Y, Nakaya M, Oumi Y, Sano T. Nanoacorns: anisotropically phase-segregated CoPd sulfide nanoparticles. J Am Chem Soc 2004; 126: 9914 5.
    • 65. Sun Y, Mayers BT, Xia Y. Template-engaged replacement reaction: a one-step approach to the large-scale synthesis of metal nanostructures with hollow interiors. Nano Lett 2002; 2: 481 5.
    • 66. Cobley CM, Campbell DJ, Xia Y. Tailoring the optical and catalytic properties of gold-silver nanoboxes and nanocages by introducing palladium. Adv Mater 2008; 20: 748 52.
    • 67. Gunawidjaja R, Peleshanko S, Ko H, Tsukruk VV. Bimetallic nanocobs: decorating silver nanowires with gold nanoparticles. Adv Mater 2008; 20: 1544 9.
    • 68. Metraux GS, Cao YC, Jin R, Mirkin CA. Triangular nanoframes made of gold and silver. Nano Lett 2003; 3: 519 22.
    • 69. Huang C-C, Yang Z, Chang H-T. Synthesis of dumbbellshaped Au-Ag core-shell nanorods by seed-mediated growth under alkaline conditions. Langmuir 2004; 20: 6089 92.
    • 70. Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 2006; 35: 209 17.
    • 71. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev 2008; 37: 1783 91.
    • 72. Sau TK, Rogach AL. Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater 2010; 22: 1781 804.
    • 73. Sau TK, Rogach AL, Jackel F, Klar TA, Feldmann J. Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 2010; 22: 1805 25.
    • 74. Elechiguerra JL, Reyes-Gasga J, Yacaman MJ. The role of twinning in shape evolution of anisotropic noble metal nanostructures. J Mater Chem 2006; 16: 3906 19.
    • 75. Sharma V, Park K, Srinivasarao M. Colloidal dispersion of gold nanorods: historical background, optical properties, seedmediated synthesis, shape separation and self-assembly. Materials Science and Engineering R Reports 2009; 65: 1 38.
    • 76. Yong K-T, Swihart MT, Ding H, Prasad PN. Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging. Plasmonics 2009; 4: 79 93.
    • 77. Myroshnychenko V, Rodriguez-Fernandez J, PastorizaSantos I, Funston AM, Novo C, Mulvaney P, et al. Modelling the optical response of gold nanoparticles. Chem Soc Rev 2008; 37: 1792 805.
    • 78. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 2001; 34: 257 64.
    • 79. O'Handley RC. Modern magnetic materials, principles and applications. New York: Wiley-Interscience Publication; 2000.
    • 80. Goodman CM, McCusker CD, Yilmaz T, Rotello VM. Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjugate Chem 2004; 15: 897 900.
    • 81. Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007; 1: 133 43.
    • 82. Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, et al. Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 2003; 100: 13549 54.
    • 83. Link S, Furube A, Mohamed MB, Asahi T, Masuhara H, ElSayed MA. Hot electron relaxation dynamics of gold nanoparticles embedded in MgSO4 powder compared to solution: the effect of the surrounding medium. J Phys Chem B 2002; 106: 945 55.
    • 84. Link S, El-Sayed MA. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 2003; 54: 331 66.
    • 85. Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater 2003; 2: 668 71.
    • 86. Salem AK, Hung CF, Kim TW, Wu TC, Searson PC, Leong KW. Multi-component nanorods for vaccination applications. Nanotechnology 2005; 16: 484 7.
    • 87. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, et al. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006; 35: 1084 94.
    • 88. Jain PK, Eustis S, El-Sayed MA. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J Phys Chem B 2006; 110: 18243 53.
    • 89. Lowery AR, Gobin AM, Day ES, Halas NJ. Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 2006; 1: 1 6.
    • 90. Loo C, Lin A, Hirsch L, Lee M-H, Barton J, Halas N, et al. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol Cancer Res Treat 2004; 3: 33 40.
    • 91. Mohamed MB, Temer SA, Link S, Braun M, El-Sayed MA. Hot electron and phonon dynamics of gold nanoparticles embedded in a gel matrix. Chem Phys Lett 2001; 343: 55 63.
    • 92. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, et al. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 2008; 41: 1721 30.
    • 93. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 1998; 279: 377 80.
    • 94. James WD, Hirsch LR, West JL, O'Neal PD, Payne JD. Application of INAA to the build-up and clearance of gold nanoshells in clinical studies in mice. J Radioanal Nucl Chem 2007; 271: 455 9.
    • 95. Huang X, Qian W, El-Sayed IH, El-Sayed MA. The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy. Lasers Med Sci 2007; 39: 747 53.
    • 96. Loo C, Lowery A, Halas NJ, West J, Drezek R. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 2005; 5: 709 11.
    • 97. Wang Y, Xie X, Wang X, Ku G, Gill KL, O'Neal DP, et al. Photoacoustic tomography of a nanoshell contrast agent in the in vivo rat brain. Nano Lett 2004; 4: 1689 92.
    • 98. O'Neal DP, Hirsch LR, Halas NJ, Payne JD, West JL. Photothermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 2004; 209: 171 6.
    • 99. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997; 277: 1078 80.
    • 100. Nam JM, Thaxton CC, Mirkin CA. Nanoparticles-based biobar codes for the ultrasensitive detection of proteins. Science 2003; 301: 1884 6.
    • 101. Katz E, Willner I. Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chem Int Ed 2004; 43: 6042 108.
    • 102. Huang X, Jain PK, El-Sayed IH, El-Sayed MA. Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostics and therapy. Nanomedicine 2007; 2: 681 93.
    • 103. Willets KA, Van DRP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58: 267 97.
    • 104. Kneipp K, Moskovits M, Kneipp H. Surface-enhanced Raman scattering: physics and applications. Berlin, New York: Springer; 2006.
    • 105. Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 1999; 99: 2957 75.
    • 106. Orendorff CJ, Gole A, Sau TK, Murphy CJ. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 2005; 77: 3261 6.
    • 107. Hu J-Q, Chen Q, Xie Z-X, Han G-B, Wang R-H, Ren B, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires. Adv Funct Mater 2004; 14: 183 9.
    • 108. Campion A, Kambhampati P. Surface-enhanced Raman scattering. Chem Soc Rev 1998; 27: 241 50.
    • 109. Wang H, Levin CS, Halas NJ. Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced Raman spectroscopy substrates. J Am Chem Soc 2005; 127: 14992 3.
    • 110. Nie S, Emory SR. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997; 275: 1102 6.
    • 111. O'Neal PD, Cote GL, Motamedi M, Chen J, Lin W-C. Feasibility study using surface-enhanced Raman spectroscopy for the quantitative detection of excitatory amino acids. J Biomed Opt 2003; 8: 33 9.
    • 112. Sulk R, Chan C, Guicheteau J, Gomez C, Heyns JBB, Corcoran R, et al. Surface-enhanced Raman assays (SERA): measurement of bilirubin and salicylate. J Raman Spectrosc 1999; 30: 853 9.
    • 113. Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 2007; 111: 9095 104.
    • 114. Haes AJ, Haynes CL, McFarland AD, Schatz GC, van Duyne RP, Zou S. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull 2005; 30: 368 75.
    • 115. Banholzer MJ, Millstone JE, Qin L, Mirkin CA. Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 2008; 37: 885 97.
    • 116. Jensen L, Aikens CM, Schatz GC. Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 2008; 37: 1061 73.
    • 117. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 2007; 58: 267 97.
    • 118. Ray PC. Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing. Chem Rev 2010; 110: 5332 65.
    • 119. Segets D, Tomalino LM, Gradl J, Peukert WJ. Real-time monitoring of the nucleation and growth of ZnO nanoparticles using an optical Hyper-Rayleigh scattering method. J Phys Chem C 2009; 113: 11995 2001.
    • 120. Neely A, Perry C, Varisli B, Singh A, Arbneshi T, Senapati D, et al. Ultrasensitive and highly selective detection of Alzheimer's disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009; 3: 2834 40.
    • 121. Wang G, Sun WJ. Optical limiting of gold nanoparticle aggregates induced by electrolytes. J Phys Chem B 2006; 110: 20901 5.
    • 122. Kneipp J, Kneipp H, Wittig B, Kneipp K. One- and twophoton excited optical pH probing for cells using SurfaceEnhanced Raman and Hyper-Raman nanosensors. Nano Lett 2007; 7: 2819 23.
    • 123. Duboisset I, Russier-Antoine E, Benichou G, Jonin BC, Brevet PF. Single metallic nanoparticle sensitivity with Hyper Rayleigh Scattering. J Phys Chem C 2009; 113: 13477 81.
    • 124. Singh AK, Senapati D, Wang S, Griffin J, Neely A, Candice P, et al. Gold nanorod based selective identification of escherichia coli bacteria using two-photon Rayleigh Scattering Spectroscopy. ACS Nano 2009; 3: 1906 12.
    • 125. Nath N, Chilkoti A. Label-free biosensing by surface plasmon resonance of nanoparticles on glass. Optimization of nanoparticle size. Anal Chem 2004; 76: 5370 8.
    • 126. Orendorff CJ, Gole A, Sau TK, Murphy CJ. Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Anal Chem 2005; 77: 3261 6.
    • 127. Hu J, Wang Z, Li J. Gold nanoparticles with special shapes: controlled synthesis, surface-enhanced Raman scattering, and the application in biodetection. Sensors 2007; 7: 3299 311.
    • 128. He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, et al. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 2000; 122: 9071 7.
    • 129. Maxwell DJ, Taylor JR, Nie SM. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 2002; 124: 9606 12.
    • 130. Dickerson MB, Sandhage KH, Naik RR. Protein- and peptidedirected syntheses of inorganic materials. Chem Rev 2008; 108: 4935 78.
    • 131. He W, Henne WA, Wei Q, Zhao Y, Doorneweerd DD, Wei A. Two-photon luminescence imaging of bacillus spores using peptide-functionalized gold nanorods. Nano Res 2008; 1: 450 6.
    • 132. Wang H, Huff TB, Zweifel DA, He W, Low PS, Wei A, et al. In vitro and in vivo two-photon luminescence imaging of single gold nanorods. Proc Natl Acad Sci USA 2005; 102: 15752 6.
    • 133. Durr NJ, Larson T, Smith DK, Korgel BA, Sokolov K, BenYakar A. Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods. Nano Lett 2007; 7: 941 5.
    • 134. Black KC, Kirkpatrick ND, Troutman TS, Xu L, Vagner J, Gillies RJ, et al. Gold nanorods targeted to delta opioid receptor: plasmon-resonant contrast and photothermal agents. Mol Imaging 2008; 7: 50 7.
    • 135. Liz Marza´n LM. (Non-carbon) anisotropic nanomaterials. J Mater Chem 2006; 16: 3891 2.
    • 136. Teo BK, Sun XH. Classification and representations of lowdimensional nanomaterials: terms and symbols. J Clust Sci 2007; 18: 346 57.
    • 137. Sun XH, Wong NB, Li CP, Lee ST, Sham TK. Chainlike silicon nanowires: morphology, electronic structure and luminescence studies. J Appl Phys 2004; 96: 3447 51.
    • 138. Sun XH, Li CP, Wong NB, Lee CS, Lee ST, Teo BK. Reductive growth of nanosized ligated metal clusters on silicon nanowires. Inorg Chem 2002; 41: 4331 6.
    • 139. Sun X-H, Li C-P, Wong N-B, Lee C-S, Lee S-T, Teo B-K. Templating effect of hydrogen-passivated silicon nanowires in the production of hydrocarbon nanotubes and nanoonions via sonochemical reactions with common organic solvents under ambient conditions. J Am Chem Soc 2002; 124: 14856 7.
    • 140. Li CP, Teo BK, Sun XH, Wong NB, Lee ST. Hydrocarbon and carbon nanostructures produced by sonochemical reactions of organic solvents on hydrogen-passivated silicon nanowires under ambient conditions. Chem Mater 2005; 17: 5780 8.
    • 141. Hu J, Ouyang M, Yang P, Lieber CM. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 1999; 399: 48 51.
    • 142. Teo BK, Li CP, Sun XH, Wong NB, Lee ST. Silicon-silica nanowires, nanotubes, and biaxial nanowires: inside, outside, and side-by-side growth of silicon versus silica on zeolite. Inorg Chem 2003; 42: 6723 8.
    • 143. Jung Y, Ko D-K, Agarwal R. Synthesis and structural characterization of single-crystalline branched nanowire heterostructures. Nano Lett 2007; 7: 264 8.
    • 144. Ogino T, Hibino H, Homma Y, Kobayashi Y, Prabhakaran K, Sumitomo K, et al. Fabrication and integration of nanostructures on Si surfaces. Acc Chem Res 1999; 32: 447 54.
    • 145. Hochbaum AI, Fan R, He R, Yang P. Controlled growth of Si nanowire arrays for device integration. Nano Lett 2005; 5: 457 60.
    • 146. Schaffler F. High-mobility Si and Ge structures. Semicond Sci Technol 1997; 12: 1515 49.
    • 147. Whall TE, Parker EHC. SiGe*heterostructures for CMOS technology. Thin Solid Films 2000; 367: 250 9.
    • 148. Whall TE, Parker EHC. Si-Ge heterostructures for FET applications. J Phys D Appl Phys 1998; 31: 1397 416.
    • 149. Brunner K. Si/Ge nanostructures. Rep Prog Phys 2002; 65: 27 72.
    • 150. Xia Y, Rogers JA, Paul KE, Whitesides GM. Unconventional methods for fabricating and patterning nanostructures. Chem Rev 1999; 99: 1823 48.
    • 151. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP. Metal nanoparticles and their assemblies. Chem Soc Rev 2000; 29: 27 35.
    • 152. Tao AR, Huang J, Yang P. Langmuir-blodgettry of nanocrystals and nanowires. Acc Chem Res 2008; 41: 1662 73.
    • 153. Pileni MP. Self-assemblies of nanocrystals: fabrication and collective properties. J Phys Chem B 2001: 105: 3358 71
    • 154. Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, Whetten RL. Highly oriented molecular Ag nanocrystal arrays. J Phys Chem 1996; 100: 13904 10.
    • 155. Leontidis E, Kleitou K, Kyprianidou-Leodidou T, Bekiari V, Lianos P. Gold colloids from cationic surfactant solutions. 1. Mechanisms that control particle morphology. Langmuir 2002; 18: 3659 68.
    • 156. Berhault G, Bausach M, Bisson L, Becerra L, Thomazeau C, Uzio D. Seed-mediated synthesis of Pd nanocrystals: factors influencing a kinetic- or thermodynamic-controlled growth regime. J Phys Chem C 2007; 111: 5915 25.
    • 157. Murphy CJ, Sau TK, Gole A, Orendorff CJ. Surfactantdirected synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 2005; 30: 349 55.
    • 158. Bogels G, Meekes H, Bennema P, Bollen D. Growth mechanism of vapor-grown silver crystals: relation between twin formation and morphology. J Phys Chem B 1999; 103: 7577 83.
    • 159. Lofton C, Sigmund W. Mechanisms controlling crystal habits of gold and silver colloids. Adv Func Mater 2005; 15: 1197 208.
    • 160. Zsigmondy R. The chemistry of colloids. New York: John Wiley; 1917.
    • 161. Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 2001; 105: 4065 7.
    • 162. Ha TH, Koo H-J, Chung BH. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C 2006; 111: 1123 30.
    • 163. Millstone JE, Metraux GS, Mirkin CA. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 2006; 16: 1209 14.
    • 164. Sajanlal PR, Pradeep T. Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates. Adv Mater 2008; 20: 980 3.
    • 165. Chen S, Carroll DL. Silver nanoplates. Size control in two dimensions and formation mechanisms. J Phys Chem B 2004; 108: 5500 6.
    • 166. Fan F-R, Liu D-Y, Wu Y-F, Duan S, Xie Z-X, Jiang Z-Y, et al. Epitaxial growth of heterogeneous metal nanocrystals: from gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 2008; 130: 6949 51.
    • 167. Cho EC, Camargo PHC, Xia Y. Synthesis and characterization of noble-metal nanostructures containing gold nanorods in the center. Adv Mater 2010; 22: 744 8.
    • 168. Sau TK, Murphy CJ. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 2004; 126: 8648 9.
    • 169. Sajanlal PR, Pradeep T. Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infraredabsorbing materials. Nano Res 2009; 2: 306 20.
    • 170. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, et al. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 2005; 109: 13857 70.
    • 171. Johnson CJ, Dujardin E, Davis SA, Murphy CJ, Mann S. Growth and form of gold nanorods prepared by seedmediated, surfactant-directed synthesis. J Mater Chem 2002; 12: 1765 70.
    • 172. Perez-Juste J, Liz-Marzan LM, Carnie S, Chan DYC, Mulvaney P. Electric-field-directed growth of gold nanorods in aqueous surfactant solutions. Adv Funct Mater 2004; 14: 571 9.
    • 173. Samal A, Sreeprasad T, Pradeep T. Investigation of the role of NaBH4 in the chemical synthesis of gold nanorods. J Nanopart Res 2010; 12: 1777 86.
    • 174. Fievet F, Lagier JP, Figlarz M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull 1989; 14: 29 34.
    • 175. Viau G, Fievet-Vincent F, Fievet F. Nucleation and growth of bimetallic CONI and FENI monodisperse particles prepared in polyols. Solid State Ionics 1996; 84: 259 70.
    • 176. Sun Y, Yin Y, Mayers BT, Herricks T, Xia Y. Uniform silver nanowires synthesis by reducing AgNo3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem Mater 2002; 14: 4736 45.
    • 177. Wiley B, Sun Y, Mayers B, Xia Y. Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 2005; 11: 454 63.
    • 178. Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y. Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 2009; 60: 167 92.
    • 179. Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 2007; 40: 1067 76.
    • 180. Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002; 298: 2176 9.
    • 181. Im SH, Lee YT, Wiley B, Xia Y. Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity. Angew Chem Int Ed 2005; 44: 2154 7.
    • 182. Xiong Y, Siekkinen AR, Wang J, Yin Y, Kim MJ, Xia Y. Synthesis of silver nanoplates at high yields by slowing down the polyol reduction of silver nitrate with polyacrylamide. J Mater Chem 2007; 17: 2600 2.
    • 183. Seo D, Park JC, Song H. Polyhedral gold nanocrystals with OH symmetry: from octahedra to cubes. J Am Chem Soc 2006; 128: 14863 70.
    • 184. Li C, Shuford KL, Chen M, Lee EJ, Cho SO. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano 2008; 2: 1760 9.
    • 185. Yu SH. Bio-inspired crystal growth by synthetic templates. Top Curr Chem 2007; 271: 79 118.
    • 186. Klaus T, Joerger R, Olsson E, Granqvist C-G. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 1999; 96: 13611 4.
    • 187. Brown S, Sarikaya M, Johnson E. A genetic analysis of crystal growth. J Mol Biol 2000; 299: 725 35.
    • 188. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. Biological synthesis of triangular gold nanoprisms. Nat Mater 2004; 3: 482 8.
    • 189. Shankar SS, Rai A, Ahmad A, Sastry M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 2005; 17: 566 72.
    • 190. Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Me 2005; 35: 19 26.
    • 191. Smitha SL, Philip D, Gopchandran KG. Green synthesis of gold nanoparticles using cinnamomum zeylanicum leaf broth. Spectrochim Acta A 2009; 74: 735 9.
    • 192. Liu B, Xie J, Lee JY, Ting YP, Chen JP. Optimization of highyield biological synthesis of single-crystalline gold nanoplates. J Phys Chem B 2005; 109: 15256 63.
    • 193. Xie J, Lee JY, Wang DIC, Ting YP. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 2007; 1: 429 39.
    • 194. Xie J, Lee JY, Wang DIC, Ting YP. Identification of active biomolecules in the high-yield synthesis of single-crystalline gold nanoplates in algal solutions. Small 2007; 3: 672 82.
    • 195. He S, Zhang Y, Guo Z, Gu N. Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulate. Biotechnol Prog 2008; 24: 476 80.
    • 196. Nair B, Pradeep T. Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des 2002; 2: 293 8.
    • 197. Lu C, Qi L, Yang J, Tang L, Zhang D, Ma J. Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate. Chem Commun 2006: 3551 3.
    • 198. Cansell F, Chevalier B, Demourgues A, Etourneau J, Even C, Garrabos Y, et al. Supercritical fluid processing: a new route for materials synthesis. J Mater Chem 1999; 9: 67 75.
    • 199. Adams BD, Wu G, Nigro S, Chen A. Facile synthesis of Pd-Cd nanostructures with high capacity for hydrogen storage. J Am Chem Soc 2009; 131: 6930 1.
    • 200. Yuan J, Li W-N, Gomez S, Suib SL. Shape-controlled synthesis of manganese oxide octahedral molecular sieve threedimensional nanostructures. J Am Chem Soc 2005; 127: 4184 5.
    • 201. Li Y-J, Wang C-Y, Lu M-Y, Li K-M, Chen L-J. Electrodeposited hexagonal ringlike superstructures composed of hexagonal Co-doped ZnO nanorods with optical tuning and high-temperature ferromagnetic properties. Cryst Growth Des 2008; 8: 2598 602.
    • 202. Shen G, Chen D. Self-coiling of Ag2V4O11 nanobelts into perfect nanorings and microloops. J Am Chem Soc 2006; 128: 11762 3.
    • 203. Tian L, Tan HY, Vittal JJ. Morphology-controlled synthesis of Bi2S3 nanomaterials via single- and multiple-source approaches. Cryst Growth Des 2008; 8: 734 8.
    • 204. Chang C-C, Wu H-L, Kuo C-H, Huang MH. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chemistry of Materials 2008; 20: 7570 4.
    • 205. Lu Q, Gao F, Komarneni S. Biomolecule-assisted reduction in the synthesis of single-crystalline tellurium nanowires. Adv Mater 2004; 16: 1629 32.
    • 206. Wang Z, Wang L, Wang H. Peg-mediated hydrothermal growth of single-crystal tellurium nanotubes. Cryst Growth Des 2008; 8: 4415 9.
    • 207. Brenner A, Riddell GE. Nickel plating on steel. Good-quality deposits by chemical reaction. J Res Natl Bur Stand (US) 1946; 37: 31 4.
    • 208. Sun Y. Direct growth of dense, pristine metal nanoplates with well-controlled dimensions on semiconductor substrates. Chem Mater 2007; 19: 5845 7.
    • 209. Aizawa M, Cooper AM, Malac M, Buriak JM. Silver nanoinukshuks on germanium. Nano Lett 2005; 5: 815 9.
    • 210. Fang, Fang J, You H, Kong P, Yi Y, Song X, Ding B. Dendritic silver nanostructure growth and evolution in replacement reaction. Cryst Growth Des 2007; 7: 864 7.
    • 211. Fang J, Ma X, Cai H, Song X, Ding B. Nanoparticleaggregated 3D monocrystalline gold dendritic nanostructures. Nanotechnology 2006; 17: 5841 5.
    • 212. Sun Y, Xia Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J Am Chem Soc 2004; 126: 3892 901.
    • 213. Au L, Chen Y, Zhou F, Camargo PHC, Lim B, Li Z-Y, et al. Synthesis and optical properties of cubic gold nanoframes. Nano Res 2008; 1: 441 9.
    • 214. Xiong Y, Wiley BJ, Chen J, Li Z-Y, Yin Y, Xia Y. Corrosionbased synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew Chem Int Ed 2005; 44: 7913 7.
    • 215. Kim D, Park J, An K, Yang N-K, Park J-G, Hyeon T. Synthesis of hollow iron nanoframes. J Am Chem Soc 2007; 129: 5812 3.
    • 216. Sun Y, Xia Y. Multiple-walled nanotubes made of metals. Adv Mater 2004; 16: 264 8.
    • 217. Esumi K, Matsuhisa K, Torigoe K. Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 1995; 11: 3285 7.
    • 218. Kim F, Song JH, Yang P. Photochemical synthesis of gold nanorods. J Am Chem Soc 2002; 124: 14316 7.
    • 219. Kundu S, Liang H. Photochemical synthesis of electrically conductive CDS nanowires on DNA scaffolds. Adv Mater 2008; 20: 826 31.
    • 220. Luoa X, Imae T. Photochemical synthesis of crown-shaped platinum nanoparticles using aggregates of G4-NH2 PAMAM dendrimer as templates. J Mater Chem 2007; 17: 567 71.
    • 221. Jin R, Cao YC, Hao E, Me´traux GS, Schatz GC, Mirkin CA. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003; 425: 487 90.
    • 222. Huang W-C, Chen Y-C. Photochemical synthesis of polygonal gold nanoparticles. J Nanopart Res 2008; 10: 697 702.
    • 223. Reetz MT, Helbig W. Size-selective synthesis of nanostructured transition metal clusters. J Am Chem Soc 1994; 116: 7401 2.
    • 224. Huang C-J, Chiu P-H, Wang Y-H, Chen WR, Mee TH. Synthesis of the gold nanocubes by electrochemical technique. J Electrochem Soc 2006; 153: D129 33.
    • 225. Yu Y-Y, Chang S-S, Lee C-L, Wang CRC. Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 1997; 101: 6661 4.
    • 226. Tian N, Zhou Z-Y, Sun S-G, Cui L, Ren B, Tian Z-Q. Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity. Chem Commun 2006; 4090 2.
    • 227. Gu C, Zhang T-Y. Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir 2008; 24: 12010 6.
    • 228. Sun Y, Qiao R. Facile tuning of superhydrophobic states with Ag nanoplates. Nano Res 2008; 1: 292 302.
    • 229. Liang H-W, Liu S, Yu S-H. Controlled synthesis of onedimensional inorganic nanostructures using pre-existing onedimensional nanostructures as templates. Adv Mater 2010; 22: 3925 37.
    • 230. Meng, GW, Han, FM, Zhao, X L, Chen, BS, Yang, DC, Liu, JX, Xu, QL, Kong, MG, Zhu, XG, Jung, YJ, et al. A general synthetic approach to interconnected nanowire/nanotube and nanotube/nanowire/nanotube heterojunctions with branched topology. Angew Chem Int Ed 2009; 48: 7166 70.
    • 231. Foss CA Jr, Hornyak GL, Stockert JA, Martin CR. Optical properties of composite membranes containing arrays of nanoscopic gold cylinders. J Phys Chem 1992; 96: 7497 9.
    • 232. Martin CR. Nanomaterials: a membrane-based synthetic approach. Science 1994; 266: 1961 6.
    • 233. Hulteen JC, Martin CR. A general template-based method for the preparation of nanomaterials. J Mater Chem 1997; 7: 1075 87.
    • 234. van der Zande B, Bo¨ hmer MR, Fokkink LGJ, Sch o¨nenberger C. Colloidal dispersions of gold rods. Synthesis and optical properties. Langmuir 2000; 16: 451 8.
    • 235. Brus L. Noble metal nanocrystals: plasmon electron transfer photochemistry and single-molecule Raman spectroscopy. Accounts of Chemical Research 2008; 41: 1742 9.
    • 236. Noguez C. Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 2007; 111: 3806 19.
    • 237. Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer; 1995.
    • 238. Nelayah J, Kociak M, Stephan O, Garcia de Abajo FJ, Tence M, Henrard L, et al. Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 2007; 3: 348 53.
    • 239. Bohren C, Huffmann D. Absorption and scattering of light by small particles. New York: John-Wiley; 1983.
    • 240. Wokaun A, Gordon JP, Liao PF. Radiation damping in surface-enhanced Raman scattering. Phys Rev Lett 1982; 48: 1974 4.
    • 241. Xu H, Aizpurua J, Kall M, Apell P. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys Rev E 2000; 62: 4318 24.
    • 242. Liao PF, Wokaun A. Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 1982; 76: 751 2.
    • 243. Gersten J, Nitzan A. Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J Chem Phys 1980; 73: 3023 37.
    • 244. Jang NH, Suh JS, Moskovits M. Effect of surface geometry on the photochemical reaction of 1,10-phenanthroline adsorbed on silver colloid surface. J Phys Chem B 1997; 101: 8279 85.
    • 245. Lu X, Tuan H-Y, Chen J, Li Z-Y, Korgel BA, Xia Y. Mechanistic studies on the galvanic replacement reaction between multiply twinned particles of Ag and HAuCl4 in an organic medium. J Am Chem Soc 2007; 129: 1733 42.
    • 246. Yin Y, Erdonmez C, Aloni S, Alivisatos AP. Faceting of nanocrystals during chemical transformation: from solid silver spheres to hollow gold octahedral. J Am Chem Soc 2006; 128: 12671 3.
    • 247. Lee I, Morales R, Albiter MA, Zaera F. Synthesis of heterogeneous catalysts with well shaped platinum particles to control reaction selectivity. Proc Natl Acad Sci USA 2008; 105: 15241 6.
    • 248. Fukuoka A, Higashimoto N, Sakamoto Y, Inagaki S, Fukushima Y, Ichikawa M. Preparation and catalysis of Pt and Rh nanowires and particles in FSM-16. Microporous Mesoporous Mater 2001; 48: 171 9.
    • 249. Telkar MM, Rode CV, Chaudhari RV, Joshi SS, Nalawade AM. Shape-controlled preparation and catalytic activity of metal nanoparticles for hydrogenation of 2-butyne-1,4-diol and styrene oxide. Appl Catal A Gen 2004; 273: 11 9.
    • 250. Nikoobakht B, Wang ZL, El-Sayed MA. Self-assembly of gold nanorods. J Phys Chem B 2000; 104: 8635 40.
    • 251. Dimitrov AS, Nagayama K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir 1996; 12: 1303 11.
    • 252. Sau TK, Murphy CJ. Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005; 21: 2923 9.
    • 253. Dujardin E, Hsin L-B, Wang CRC, Mann S. DNA-driven selfassembly of gold nanorods. Chem Commun 2001; 14: 1264 5.
    • 254. Pan B, Ao L, Gao F, Tian H, He R, Cui D. End-to-end selfassembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 2005; 16: 1776 80.
    • 255. Chang J-Y, Wu H, Chen H, Ling Y-C, Tan W. Oriented assembly of Au nanorods using biorecognition system. Chem Commun 2005; 8: 1092 4.
    • 256. Wang C, Chen Y, Wang T, Ma Z, Su Z. Biorecognition-driven self-assembly of gold nanorods: a rapid and sensitive approach toward antibody sensing. Chem Mater 2007; 19: 5809 11.
    • 257. Caswell KK, Wilson JN, Bunz UHF, Murphy CJ. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J Am Chem Soc 2003; 125: 13914 5.
    • 258. Wang Y, Li YF, Wang J, Sanga Y, Huang CZ. End-to-end assembly of gold nanorods by means of oligonucleotidemercury (II) molecular recognition. Chem Commun 2010; 46: 1332 4.
    • 259. Joseph STS, Ipe BI, Pramod P, Thomas KG. Gold nanorods to nanochains: mechanistic investigations on their longitudinal assembly using a, v-alkanedithiols and interplasmon coupling. J Phys Chem B 2006; 110: 150 7.
    • 260. Thomas KG, Barazzouk S, Ipe BI, Joseph STS, Kamat PV. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J Phys Chem B 2004; 108: 13066 8.
    • 261. Ni W, Mosquera RA, Pe´rez-Juste J, Liz-Marzan LM. Evidence for hydrogen-bonding-directed assembly of gold nanorods in aqueous solution. J Phys Chem Lett 2010; 1: 1181 5.
    • 262. Sudeep PK, Joseph STS, Thomas KG. Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 2005; 127: 6516 7.
    • 263. Zhang S, Kou X, Yang Z, Shi Q, Stucky GD, Sun L, et al. Nanonecklaces assembled from gold rods, spheres, and bipyramids. Chem Commun 2007; 18: 1816 8.
    • 264. Kawamura G, Yang Y, Nogami M. End-to-end assembly of CTAB-stabilized gold nanorods by citrate anions. J Phys Chem C 2008; 112: 10632 6.
    • 265. Orendorff CJ, Hankins PL, Murphy CJ. pH-triggered assembly of gold nanorods. Langmuir 2005; 21: 2022 6.
    • 266. Sreeprasad TS, Samal AK, Pradeep T. One-, two-, and threedimensional superstructures of gold nanorods induced by dimercaptosuccinic acid. Langmuir 2008; 24: 4589 99.
    • 267. Mitamura K, Imae T, Saito N, Takai O. Fabrication and selfassembly of hydrophobic gold nanorods. J Phys Chem B 2007; 111: 8891 8.
    • 268. Nakashima H, Furukawa K, Kashimura Y, Torimitsu K. Selfassembly of gold nanorods induced by intermolecular interactions of surface-anchored lipids. Langmuir 2008; 24: 5654 8.
    • 269. Walker DA, Gupta VK. Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide. Nanotechnology 2008: 435 603.
    • 270. Chan Y-T, Li S, Moorefield CN, Wang P, Shreiner CD, Newkome GR. Self-assembly, disassembly, and reassembly of gold nanorods mediated by bis(terpyridine)-metal connectivity. Chem Eur J 2010; 16: 4164 8.
    • 271. Correa-Duarte MA, Pe´rez-Juste J, Sa´nchez-Iglesias A, Giersig M, Liz-Marza´n LM. Aligning Au nanorods by using carbon nanotubes as templates. Angew Chem Int Ed 2005; 44: 4375. 8
    • 272. Correa-Duarte MA, Liz-Marza´n LM. Carbon nanotubes as templates for one-dimensional nanoparticle assemblies. J Mater Chem 2006; 16: 22 5.
    • 273. Khanal BP, Zubarev ER. Rings of nanorods. Angew Chem Int Ed 2007; 46: 2195 8.
    • 274. Kumar VRR, Samal AK, Sreeprasad TS, Pradeep T. Gold nanorods grown on microgels leading to hexagonal nanostructures. Langmuir 2007; 23: 8667 9.
    • 275. Das M, Mordoukhovski L, Kumacheva E. Sequestering gold nanorods by polymer microgels. Adv Mater 2008; 20: 2371 5.
    • 276. Wang C, Chen Y, Wang T, Ma Z, Su Z. Monodispersed gold nanorod-embedded silica particles as novel Raman labels for biosensing. Adv Funct Mater 2008; 18: 355 61.
    • 277. Mieszawska AJ, Slawinski GW, Zamborini FP. Directing the growth of highly aligned gold nanorods through a surface
    • 298. Ahmed S, Ryan KM. Self-assembly of vertically aligned nanorod supercrystals using highly oriented pyrolytic graphite. Nano Lett 2007; 7: 2480 5.
    • 299. Querner C, Fischbein MD, Heiney PA, Drndic M. Millimeterscale assembly of CdSe nanorods into smectic superstructures by solvent drying kinetics. Adv Mater 2008; 20: 2308 14.
    • 300. Kang C-C, Lai C-W, Peng H-C, Shyue J-J, Chou P-T. 2D selfbundled CdS nanorods with micrometer dimension in the absence of an external directing process. ACS Nano 2008; 2: 750 6.
    • 301. Carbone L, Nobile C, De Giorgi M, Sala FD, Morello G, Pompa P, et al. Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett 2007; 7: 2942 50.
    • 302. Ghezelbash A, Koo B, Korgel BA. Self-assembled stripe patterns of CdS nanorods. Nano Lett 2006; 6: 1832 6.
    • 303. He J, Zhang Q, Gupta S, Emrick T, Russell TP, Thiyagarajan P. Drying droplets: a window into the behavior of nanorods at interface. Small 2007; 3: 1214 7.
    • 304. Zhuang J, Shaller AD, Lynch J, Wu H, Chen O, et al. Cylindrical superparticles from semiconductor nanorods. J Am Chem Soc 2009; 131: 6084 5.
    • 305. Salant A, Amitay-Sadovsky E, Banin U. Directed self-assembly of gold-tipped CdSe nanorods. J Am Chem Soc 2006; 128: 10006 7.
    • 306. Zhao N, Liu K, Greener J, Nie Z, Kumacheva E. Close-packed superlattices of side-by-side assembled Au-CdSe nanorods. Nano Lett 2009; 9: 3077 81.
    • 307. Petroski JM, Green TC, El-Sayed MA. Self-assembly of platinum nanoparticles of various size and shape. J Phys Chem A 2001; 105: 5542 7.
    • 308. Ren J, Tilley RD. Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 2007; 129: 3287 91.
    • 309. Demortie`re A, Launois P, Goubet N, Albouy PA, Petit C. Shape-controlled platinum nanocubes and their assembly into two-dimensional and three-dimensional superlattices. J Phys Chem B 2008; 112: 14583 92.
    • 310. Chen M, Kim J, Liu JP, Fan H, Sun S. Synthesis of FePt nanocubes and their oriented self-assembly. J Am Chem Soc 2006; 128: 7132 3.
    • 311. Niu W, Li Z-Y, Shi L, Liu X, Li H, Han S, et al. Seed-mediated growth of nearly monodisperse palladium nanocubes with controllable sizes. Cryst Growth Des 2008; 8: 4440 4.
    • 312. Umar AA, Oyama M. Synthesis of palladium nanobricks with atomic-step defects. Cryst Growth Des 2008; 8: 1808 11.
    • 313. Zhang Q, Xie J, Yang J, Lee JY. Monodisperse icosahedral Ag, Au, and Pd nanoparticles: size control strategy and superlattice formation. ACS Nano 2009; 3: 139 48.
    • 314. Sajanlal PR, Pradeep T. Magnetic mesoflowers: synthesis, assembly, and magnetic properties. J Phys Chem C 2010; 114: 16051 9.
    • 315. Larsen TH, Sigman M, Ghezelbash A, Doty RC, Korgel BA. Solventless synthesis of copper sulfide nanorods by thermolysis of a single source thiolate-derived precursor. J Am Chem Soc 2003; 125: 5638 9.
    • 316. Saunders AE, Ghezelbash A, Smilgies D-M, Sigman MB, Korgel BA. Columnar self-assembly of colloidal nanodisks. Nano Lett 2006; 6: 2959 63.
    • 317. Zhuang Z, Peng Q, Zhang B, Li Y. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J Am Chem Soc 2008; 130: 10482 3.
    • 318. Zhang H, Zhang Y, Yu J, Yang D. Phase-selective synthesis and self-assembly of monodisperse copper sulfide nanocrystals. J Phys Chem C 2008; 112: 13390 4.
    • 319. Du X-S, Mo M, Zheng R, Lim S-H, Meng Y, Mai Y-W. Shapecontrolled synthesis and assembly of copper sulfide nanoparticles. Cryst Growth Des 2008; 8: 2032 5.
    • 320. Liu C, Masuda Y, Wu Y, Takai O. A simple route for growing thin films of uniform ZnO nanorod arrays on functionalized Si surfaces. Thin Solid Films 2006; 503: 110 4.
    • 321. Chen Z, Gao L. A facile route to ZnO nanorod arrays using wet chemical method. J Cryst Growth 2006; 293: 522 7.
    • 322. Liu DF, Xiang YJ, Wu XC, Zhang ZX, Liu LF, Song L, et al. Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano Lett 2006; 6: 2375 8.
    • 323. Lee Y-J, Sounart TL, Liu J, Spoerke ED, McKenzie BB, Hsu JWP, et al. Tunable arrays of ZnO nanorods and nanoneedles via seed layer and solution chemistry. Cryst Growth Des 2008; 8: 2036 40.
    • 324. Izaki M, Watanabe M, Aritomo H, Yamaguchi I, Asahina S, Shinagawa T, et al. Zinc oxide nano-cauliflower array with room temperature ultraviolet light emission. Cryst Growth Des 2008; 8: 1418 21.
    • 325. Pradhan N, Efrima S. Supercrystals of uniform nanorods and nanowires, and the nanorod-to-nanowire oriented transition. J Phys Chem B 2004; 108: 11964 70.
    • 326. Li Y, Li X, Yang C, Li Y. Ligand-controlling synthesis and ordered assembly of ZnS nanorods and nanodots. J Phys Chem B 2004; 108: 16002 11.
    • 327. Batabyal SK, Basu C, Das AR, Sanyal GS. Self-assembly of tellurium nanorods. Proceedings of 5th IEEE Conference on Nanotechnology 2005; 2: 627 30.
    • 328. Tang Z, Wang Y, Shanbhag S, Giersig M, Kotov NA. Spontaneous transformation of CdTe nanoparticles into angled Te nanocrystals: from particles and rods to checkmarks, X-marks, and other unusual shapes. J Am Chem Soc 2006; 128: 6730 6.
    • 329. Shanbhag S, Tang Z, Kotov NA. Self-organization of Te nanorods into V-shaped assemblies: a Brownian dynamics study and experimental insights. ACS Nano 2007; 1: 126 32.
    • 330. Yuan J, Gao H, Schacher F, Xu Y, Richter R, Tremel W, et al. Alignment of tellurium nanorods via a Magnetization-Alignment- Demagnetization (''MAD'') process assisted by an external magnetic field. ACS Nano 2009; 3: 1441 50.
    • 331. Dimitrijevic NM, Saponjic ZV, Rabatic BM, Rajh T. Assembly and charge transfer in hybrid TiO2 architectures using biotinavidin as a connector. J Am Chem Soc 2005; 127: 1344 5.
    • 332. Yang C, Yang Z, Gu H, Chang CK, Gao P, Xu B. Facetselective 2D self-assembly of TiO2 nanoleaves via supramolecular interactions. Chem Mater 2008; 20: 7514 20.
    • 333. Huang T, Zhao Q, Xiao J, Qi L. Controllable self-assembly of PbS nanostars into ordered structures: close-packed arrays and patterned arrays. ACS Nano 2010; 4: 4707 16.
    • 334. Li M, Schnablegger H, Mann S. Coupled synthesis and selfassembly of nanoparticles to give structures with controlled organization. Nature 1999; 402: 393 5.
    • 335. Kim F, Kwan S, Akana J, Yang P. Langmuir-Blodgett nanorods assembly. J Am Chem Soc 2001; 123: 4360 1.
    • 336. Si R, Zhang Y-W, You L-P, Yan C-H. Rare-earth oxide nanopolyhedra, nanoplates, and nanodisks. Angew Chem Int Edit 2005; 44: 3256 60.
    • 337. Zhang Y-W, Sun X, Si R, You L-P, Yan C-H. Single-crystalline and monodisperse LaF3 triangular nanoplates from a singlesource precursor. J Am Chem Soc 2005; 127: 3260 1.
    • 338. Mai H-X, Zhang Y-W, Si R, Yan Z-G, Sun L-D, You L-P, et al. High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. J Am Chem Soc 2006; 128: 6426 36.
    • 339. Si R, Zhang Y-W, Zhou H-P, Sun L-D, Yan C-H. Controlledsynthesis, self-assembly behavior, and surface-dependent optical properties of high-quality rare-earth oxide nanocrystals. Chem Mater 2007; 19: 18 27.
    • 340. Mai L, Gu Y, Han C, Hu B, Chen W, Zhang P, et al. Orientated Langmuir-Blodgett assembly of VO2 nanowires. Nano Lett 2009; 9: 826 30.
    • 341. Zheng RK, Gu H, Xu B, Fung KK, Zhang XX, Ringer SP. Self-assembly and self-orientation of truncated octahedral magnetite nanocrystals. Adv Mater 2006; 18: 2418 21.
    • 342. Qi H, Chen Q, Wang M, Wen M, Xiong J. Study of selfassembly of octahedral magnetite under an external magnetic field. J Phys Chem C 2009; 113: 17301 5.
    • 343. Liu X, McCandlish EF, McCandlish LE, Mikulka-Bolen K, Ramesh R, Cosandey F, et al. Single-crystal-like materials by the self-assembly of cube-shaped lead zirconate titanate (PZT) microcrystals. Langmuir 2005; 21: 3207 12.
    • 344. Wang J, Khoo E, Lee PS, Ma J. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods. J Phys Chem C 2008; 112: 14306 12.
    • 345. Zocher H. Spontaneous structure formation in sols; a new kind of anisotropic liquid media. Anorg Allg Chem 1925; 147: 91 110.
    • 346. Zocher H, Heller W. Iridescent strata produced by the slow hydrolysis of iron chloride. Anorg Allg Chem 1930; 186: 75 96.
    • 347. Watson JHL, Cardell RR, Heller W. The internal structure of colloidal crystals of b-FeOOH and remarks on their assemblies in Schiller layers. J Phys Chem 1962; 66: 1757 63.
    • 348. Maeda H, Maeda Y. Atomic force microscopy studies for investigating the smectic structures of colloidal crystals of bFeOOH. Langmuir 1996; 12: 1446-52.
    • 349. Liao H, Hafner JH. Gold nanorod bioconjugates. Chem Mater 2005; 17: 4636 41.
    • 350. Pissuwan D, Valenzuela SM, Killingsworth MC, Xu X, Cortie MB. Targeted destruction of murine macrophage cells with bioconjugated gold nanorods. J Nanopart Res 2007; 9: 1109 24.
    • 351. Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed nearinfrared light. Chem Commun 2005: 2247 9.
    • 352. Chen J, Yang M, Zhang Q, Cho EC, Cobley CM, Kim C, et al. Gold nanocages: a novel class of multifunctional nanomaterials for theranostic applications. Adv Func Mat 2010; 20: 3684 94.
    • 353. Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li Z-Y, et al. Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 2005; 5: 473 7.
    • 354. Au L, Zhang Q, Cobley CM, Gidding M, Schwartz AG, Chen J, et al. Quantifying the cellular uptake of antibody-conjugated Au nanocages by two-photon microscopy and inductively coupled plasma mass spectrometry. ACS Nano 2009; 4: 35 42.
    • 355. Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, et al. Gold nanocages: synthesis, properties, and applications. Adv Mater 2007; 19: 3177 84.
    • 356. Au L, Zheng D, Zhou F, Li Z-Y, Li X, Xia Y. A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells. ACS Nano 2008; 2: 1645 52.
    • 357. Hrelescu C, Sau TK, Rogach AL, Jackel F, Feldmann J. Single gold nanostars enhance Raman scattering. Appl Phys Lett 2009; 94: 153113 1 3.
    • 358. Hu M, Petrova H, Chen J, McLellan JM, Siekkinen AR. Ultrafast laser studies of the photothermal properties of gold nanocages. J Phys Chem B 2006; 110: 1520 4.
    • 359. Liao H, Nehl CL, Hafner JH. Biomedical applications of plasmon resonant metal nanoparticles. Nanomedicine 2006; 1: 201 8.
    • 360. Skrabalak SE, Au L, Lu X, Li X, Xia Y. Gold nanocages for cancer detection and treatment. Nanomedicine (London) 2007; 2: 657 68.
    • 361. Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128: 2115 20.
    • 362. Mulvihill M, Tao A, Benjauthrit K, Arnold J, Yang P. Surfaceenhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew Chem Int Ed 2008; 47: 6456 60.
    • 363. Zou X, Dong S. Surface-enhanced Raman scattering studies on aggregated silver nanoplates in aqueous solution. J Phys Chem B 2006; 110: 21545 50.
    • 364. Wang Y, Zou X, Ren W, Wang W, Wang E. Effect of silver nanoplates on Raman spectra of p-aminothiophenol assembled on smooth macroscopic gold and silver surface. J Phys Chem C 2007; 111: 3259 65.
    • 365. Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 2002; 116: 6755 9.
    • 366. Hao E, Schatz GC. Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 2004; 120: 357 66.
    • 367. Xie J, Zhang Q, Lee JY, Wang DIC. The synthesis of SERSactive gold nanoflower tags for in vivo applications. ACS Nano 2008; 2: 2473 80.
    • 368. Rex M, Hernandez FE, Campiglia AD. Pushing the limits of mercury sensors with gold nanorods. Anal Chem 2005; 78: 445 51.
    • 369. Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2003; 2: 229 32.
    • 370. Sanyal A, Bala T, Ahmed S, Singh A, Piterina AV, McGloughlin TM, et al. Water dispersible semiconductor nanorod assemblies via a facile phase transfer and their application as fluorescent biomarkers. J Mater Chem 2009; 19: 8974 81.
    • 371. Aslan K, Lakowicz JR, Geddes CD. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol 2005; 9: 538 44.
    • 372. Yu C, Irudayaraj J. Quantitative evaluation of sensitivity and selectivity of multiplex nanoSPR biosensor assays. Biophys J 2007; 93: 3684 92.
    • 373. Yu C, Nakshatri H, Irudayaraj J. Identity profiling of cell surface markers by multiplex gold nanorod probes. Nano Lett 2007; 7: 2300 6.
    • 374. Huang X-J, Li C-C, Gu B, Kim J-H, Cho S-O, Chio Y-K. Controlled molecularly mediated assembly of gold nanooctahedra for a glucose biosensor. J Phys Chem C 2008; 112: 3605 11.
    • 375. Wei Q, Hirota K, Tajima K, Hashimoto K. Design and synthesis of TiO2 nanorod assemblies and their application for photovoltaic devices. Chem Mater 2006; 18: 5080 7.
    • 376. Ju X, Feng W, Varutt K, Hori T, Fujii A, Ozaki M. Fabrication of oriented ZnO nanopillar self-assemblies and their application for photovoltaic devices. Nanotechnology 2008; 19: 435706 1 6.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    61
    61%
  • No similar publications.

Share - Bookmark

Cite this article

Collected from