LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haben, S. A.; Lawless, A. S.; Nichols, N. K. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
Implementations of incremental variational data assimilation require the iterative minimization of a series of linear least-squares cost functions. The accuracy and speed with which these linear minimization problems can be solved is determined by the condition number of the Hessian of the problem. In this study, we examine how different components of the assimilation system influence this condition number. Theoretical bounds on the condition number for a single parameter system are presented and used to predict how the condition number is affected by the observation distribution and accuracy and by the specified lengthscales in the background error covariance matrix. The theoretical results are verified in the Met Office variational data assimilation system, using both pseudo-observations and real data.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Dando, M. L., Thorpe, A. J. and Eyre, J. R. 2007. The optimal density of atmospheric sounder observations in the Met Office NWP system. Q. J. R. Met. Soc. 133, 1933-1943.
    • Fisher, M., Nocedal, J., Tre´molet, Y. and Wright, S. J. 2009. Data assimilation in weather forecasting: a case study in PDE-constrained optimization. Optim. Eng. 10, 409-426.
    • Gauthier, P., Charette, C., Fillion, L., Koclas, P. and Laroche, S. 1999. Implementation of a 3D variational data assimilation system at the Canadian Meteorological Centre. Part 1: the global analysis. Atmos.- Ocean 37, 103-156.
    • Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S. and Morneau, J. 2007. Extension of 3DVAR to 4DVAR: implementation of 4DVAR at the Meteorological Service of Canada. Mon. Wea. Rev. 135, 2339- 2354.
    • Gauthier, P. and The´paut, J.-N. 2001. Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Me´te´o-France. Mon. Wea. Rev. 129, 2089-2102.
    • Golub, G. H. and Van Loan, C. F. 1996. Matrix Computations, 3rd Edition, Johns Hopkins University Press, Baltimore, MD.
    • Gratton, S., Lawless, A. S. and Nichols, N. K., Baltimore, MD 2007. Approximate Gauss-Newton methods for non-linear least-squares problems. SIAM J. Optim. 18, 106-132.
    • Haben, S. A., Lawless, A. S. and Nichols, N. K. 2009. Conditioning of the 3DVAR data assimilation problem. Mathematics Report 3/2009, Department of Mathematics, University of Reading, U.K. Available from http://www.reading.ac.uk/maths/research/maths-report-series. aspx
    • Haben, S. A., Lawless, A. S. and Nichols, N. K. 2010. Conditioning and preconditioning of the variational data assimilation problem. Comput. Fluids 46, 252-256.
    • Healy, S. B. and White, A. A. 2005. Use of discrete fourier transforms in the 1dvar retrieval problem. Q. J. R. Met. Soc. 131, 63-72.
    • Huang, X.-Y., Xiao, Q., Barker, D. M., Zhang, X., Michalakes, J. and co-authors. 2009. Four-dimensional variational data assimilation for WRF: formulation and preliminary results. Mon. Wea. Rev. 137, 299-314.
    • Ingleby, N. B. 2001. The statistical structure of forecast errors and its representation in The Met. Office Global 3-D Variational Data Assimilation Scheme. Q. J. R. Met. Soc. 127, 209-231.
    • Katz, D., Lawless, A. S., Nichols, N. K., Cullen, M. J. P. and Bannister, R. N. 2011. Correlations of control variables in variational data assimilation. Q. J. R. Met. Soc. 137, 620-630.
    • Lawless, A. S., Gratton, S. and Nichols, N. K. 2005. An investigation of incremental 4D-Var using non-tangent linear models. Q. J. R. Met. Soc. 131, 459-476.
    • Lorenc, A. C. 1997. Development of an operational variational assimilation scheme. J. Met. Soc. Japan 75, 339-346.
    • Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., and co-authors. 2000. The Met. Office global 3-dimensional variational data assimilation scheme. Q. J. R. Met. Soc. 126, 2991- 3012.
    • Nocedal, J. and Wright, S. J. 2006. Numerical Optimization, Springer, New York.
    • Rabier, F., Ja¨rvinen, H., Klinker, E., Mahfouf, J. F. and Simmons, A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation. I: experimental results with simplified physics. Q. J. R. Met. Soc. 126, 1143-1170.
    • Rawlins, F., Ballard, S. P., Bovis, K. J., Clayton, A. M., Li, D., and co-authors. 2007. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Met. Soc. 133, 347- 362.
    • Rodgers, C. D. 2000. Inverse Methods for Atmospheric Sounding: Theory and Practice, World Scientific, Singapore.
    • Stewart, L. M. 2010. Correlated Observation Errors in Data Assimilation, PhD Thesis, Department of Mathematics, University of Reading.
    • Tre´molet, Y. 2007. Incremental 4D-Var convergence study. Tellus 59A, 706-718.
    • Tshimanga, J., Gratton, S., Weaver, A. T. and Sartenaer, A. 2008. Limited-memory preconditioners, with application to incremental four-dimensional variational data assimilation. Q. J. R. Met. Soc. 134, 751-769.
    • Yang, W., Navon, I. M. and Courtier, P. 1996. A new Hessian preconditioning method applied to variational data assimilation experiments using NASA General Circulation Models. Mon. Wea. Rev. 124, 1000-1017.
    • Zupanski, M. 1996. A preconditioning algorithm for four-dimensional variational data assimilation. Mon. Wea. Rev. 124, 2562-2573.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    43
    43%
  • No similar publications.

Share - Bookmark

Cite this article

Collected from