Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
House, J. I.; Prentice, I. C.; Ramankutty, N.; Houghton, R. A.; Heimann, M. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
The magnitude and location of terrestrial carbon sources and sinks remains subject to large uncertainties. Estimates of terrestrial CO2fluxes from ground-based inventory measurements typically find less carbon uptake than inverse model calculations based on atmospheric CO2 measurements, while a wide range of results have been obtained using models of different types. However, when full account is taken of the processes, pools, time scales and geographic areas being measured, the different approaches can be understood as complementary rather than inconsistent, and can provide insight as to the contribution of various processes to the terrestrial carbon budget. For example, quantitative differences between atmospheric inversion model estimates and forest inventory estimates in northern extratropical regions suggest that carbon fluxes to soils (often not accounted for in inventories), and into non-forest vegetation, may account for about half of the terrestrial uptake. A consensus of inventory and inverse methods indicates that, in the 1980s, northern extratropical land regions were a large net sink of carbon, and the tropics were approximately neutral (albeit with high uncertainty around the central estimate of zero net flux). The terrestrial flux in southern extratropical regions was small. Book-keeping model studies of the impacts of land-use change indicated a large source in the tropics and almost zero net flux for most northern extratropical regions; similar land use change impacts were also recently obtained using process-based models. The difference between book-keeping land-use change model studies and inversions or inventories was previously interpreted as a “missing” terrestrial carbon uptake. Land-use change studies do not account for environmental or many management effects (which are implicitly included in inventory and inversion methods). Process-based model studies have quantified the impacts of CO2 fertilisation and climate change in addition to land use change, and found that these environmental effects are in the right order of magnitude to account for the “missing” terrestrial carbon uptake. Despite recent carbon losses due to fire and insect attack in Canada and Russia, the northern extratropical regions generally have been a net carbon sink, only partially due to land-use changes such as abandonment of agricultural land. In the tropics, inventory data and flux measurements in extant forests support the existence of an environmental or management sink that counterbalances the effect of deforestation. Woody encroachment in savannas may also be a significant (but as yet poorly quantified) cause of tropical carbon uptake.DOI: 10.1034/j.1600-0889.2003.00037.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bopp, L., Le Que´re´, C., Heimann, M., Manning, A. C. and Monfray, P., 2002. Climate-induced oceanic Oxygen fluxes: implications for the contemporary carbon budget. Global Biogeochem. Cycles 16, 10.1029/2001GB001445 (web available reference).
    • Bousquet, P., Peylin, P., Ciais, P., Le Quere, C., Friedlingstein, P. and Tans, P. P., 2000. Regional changes in carbon dioxide fluxes of land and oceans since 1980. Science 290, 1342- 1346.
    • Burrows,Henry, B. K., Back, P. V., Hoffmann, M. B., Tait, L. J., Anderson, E. R., Menke, N., Danaher, T., Carter, J. O. and McKeon, G. M. 2002. Growth and carbon stock change in eucalypt woodlands in northeast Australia: ecological and greenhouse sink implications. Global Change Biol. 8, 769-784.
    • Caspersen, J., Pacala, S., Hurtt, G. C., Moorcroft, P., Birdsey, R.A. and Jenkins, J. 2000. Carbon accumulation in U.S. forests is caused overwhelmingly by changes in land use rather than CO2 or N fertilization or climate change. Science 290, 1148-1151.
    • Ciais, P., Tans, P. P., White, J. W. C., Trolier, M., Francey, R. J., Berry, J. A., Randall, D. R., Sellers, P. J., Collatz, J. G. and Schimel, D. S. 1995. Partitioning of ocean and land uptake of CO2 as inferred by delta-C13 measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. J. Geophys. Res. -Atmos. 100, 5051-5070.
    • Ciais, P., Naegler, T., Peylin, P., Freibauer, A. and Bousquet P. 2001. Horizontal displacement of carbon associated to agriculture and its impact on the atmospheric CO2 distribution. In: Proceedings of the Sixth International Carbon Dioxide Conference, Extended Abstracts, Vol. II. Sendai International Center, October 1-5, 2001. 673-675.
    • Clark, D.A. 2002. Are tropical forests an important carbon sink? Reanalysis of the long-term plot data. Ecol. Appl. 12, 3-7.
    • Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. and Totterdell, I. J. 2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model (vol. 408, p. 184, 2000). Nature 408, 750.
    • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., Cox, P. M., Fisher, V., Foley, J. A., Friend, A. D., Kucharik, C., Lomas, M. R., Ramankutty, N., Sitch, S., Smith, B., White, A. and Young-Molling, C. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol. 7, 357-373.
    • DeFries, R. S. and Townshend, J. R.G. 1994. NDVI-derived land-cover classifications at a global-scale. Int. J. Remote Sensing 15, 3567-3586.
    • Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C. and Wisniewski, J. 1994. Carbon pools and flux of global forest ecosystems. Science 263, 185-190.
    • Esser, G., Hoffstadt, J., Mack, F. and Wittenberg, U. 1994. High-Resolution Biosphere Model (HRBM) - Documentation Model Version 3.00.00, Giessen, Germany.
    • Fan, S., Gloor, M., Mahlman, J., Pacala, S., Sarmiento, J., Takahashi, T. and Tans, P. 1998. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282, 442- 446.
    • Fang, J. Y., Wang, G. G., Liu, G. H. and Xu, S. L. 1998. Forest biomass of China: An estimate based on the biomassvolume relationship. Ecol. Appl. 8, 1084-1091.
    • Fang, J. Y., Chen, A. P., Peng, C. H., Zhao, S. Q. and Ci, L. 2001. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 292, 2320-2322.
    • FAO, 1995. Land use, FAOSTAT-PC, Food and Agriculture Organization of the United Nations, Rome.
    • FAO, 2001. Global Forest Resource Assessment 2000. Main Report, Food and Agriculture Organisation of the United Nations (FAO), Rome.
    • Foley, J. A., Prentice, I. C., Ramankutty, N., Levis, S., Pollard, D., Sitch, S. and Haxeltine, A., 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Global Biogeochem. Cycles 10, 603-628.
    • Friedlingstein, P., Bopp, L., Ciais, P., Dufresne, J. L., Fairhead, L., LeTreut, H., Monfray, P. and Orr, J. 2001. Positive feedback between future climate change and the carbon cycle. Geophys. Res. Lett. 28, 1543-1546.
    • Giardina, C. P. and Ryan, M. G. 2000. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858-861.
    • Goodale, C. L., Apps, M. J., Birdsey, R. A., Field, C. B., Heath, L. S., Houghton, R. A., Jenkins, J. S., Kohlmaier, G., Kurz, W. A., Liu, S., Nabuurs, G.-J., Nilsson, S. and Shvidenko, A. 2002. Forest carbon sinks in the northern hemisphere. Ecol. Appl. 12, 891-899.
    • Grace, J., Lloyd, J., McIntyre, J., Miranda, A. C., Meir, P., Miranda, H. S., Nobre, C., Moncrieff, J., Massheder, J., Malhi, Y., Wright, I. and Gash, J. 1995. Carbon dioxide uptake by an undisturbed tropical rain forest in southwest Amazonia, 1992 to 1993. Science 270, 778-780.
    • Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Baker, D., Bousquet, P., Bruhwilerk, L., Chen, Y.-H., Ciais, P., Fan, S., Fung, I., Gloor, M., Heimann, M., Higuchi, K., John, J., Maki, T., Maksyutov, S., Masarie, K., Peylin, P., Prather, M., Pak, B. C., Randerson, J. R., Sarmiento, J., Taguchi, S., Takahashi, T. and Yuen, C.-W. 2002. Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models. Nature 415, 626-630.
    • Heimann, M. 2001. Atmospheric inversion calculations performed for IPCC Third Assessment Report, chapter 3 (The carbon cycle and atmospheric CO2), Max-Planck-Institute fu¨r Biogeochemie, Jena, Germany.
    • Holland, E. A., Braswell, B. H., Lamarque, J. F., Townsend, A., Sulzman, J., Muller, J. F., Dentener, F., Brasseur, G., Levy, H., Penner, J. E. and Roelofs, G. J. 1997. Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems. J. Geophys. Res. -Atmos. 46, 15849-15866.
    • Holland, E. A., Dentener, F. J., Braswell, B. H. and Sulzman, J. M., 1999. Contemporary and pre-industrial global reactive nitrogen budgets. Biogeochemistry 46, 7-43.
    • Houghton, R. A. 1999. The annual net flux of carbon to the atmosphere from changes in land use 1850-1990. Tellus 51B, 298-313.
    • Houghton, R. A. 2000. A new estimate of global sources and sinks of carbon from land-use change. EOS 81, S281.
    • Houghton, R. A., 2003. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use 1850-2000. Tellus 55B, this issue.
    • Houghton, R. A., Hackler, J. L. and Lawrence, K. T. 1999. The US carbon budget: Contributions from land-use change. Science 285, 574-578.
    • Houghton, R. A., Hobbie, J. E., Melillo, J. M., Moore, B., Peterson, B. J., Shaver, G. R. and Woodwell, G. M. 1983. Changes in the carbon content of terrestrial biota and soils between 1860 and 1980 - a net release of CO2 to the atmosphere. Ecol. Monogr. 53, 235-262.
    • IPCC (Intergovernmental Panel on Cliamte Change), 1996. IPCC Guidelines, Revised 1996 Versions. Reference Manual. IPCC/OECD/IEA, Working Group I, Technical Support Unit, UK.
    • IPCC, 2000. Land use, land-use change and forestry: A special report of Working Group III of the Intergovernmental Panel on Climate Change. (eds. R. T. Watson, I. R. Noble, B. Bolin, N. H.Ravindranath, D. J.Verardo, and D. J. Dokken). Cambridge University Press, Cambridge, UK.
    • Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev, S., Clement, R., Gudmundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E. D., Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R. and Valentini, R. 2001. Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Global Change Biol. 7, 269- 278.
    • Jarvis, P. G., Dolman, A. J., Schulze, E. D., Matteucci, G., Kowalski, A. S., Ceulemans, R., Rebmann, C., Moors, E. J., Granier, A., Gross, P., Jensen, N. O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Grunwald, T., Aubinet, M., Vesala, T., Rannik, U., Berbigier, P., Loustau, D., Guomundson, J., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S. and Valentini, R. 2001. Carbon balance gradient in European forests: should we doubt 'surprising' results? A reply to Piovesan & Adams. J. Veg. Sci. 12, 145-150.
    • Joos, F., Prentice, C. and House, J. I. 2002. Growth enhancement due to global atmospheric change as predicted by terrestrial ecosystem models: consistent with U.S. forest inventory data. Global Change Biol. 8, 299-303.
    • Keeling, C. D. and Piper, S. C. 2000. Interannual variations of exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000: III. Simulated sources and sinks, University of California, San Diego.
    • Keeling, R. F. and Shertz, S. R. 1992. Seasonal and interannual variations in atmospheric oxygen and implications for the global carbon cycle. Nature 358, 723-727.
    • Keeling, R. F., Piper, S. C. and Heimann, M. 1996. Global and hemispheric CO2 sinks deduced from changes in atmospheric O2 concentration. Nature 381, 218-221.
    • Keeling, R. F. and Garcia, H. E. 2002. The change in oceanic O-2 inventory associated with recent global warming. Proc. Nat. Acad. Sci. USA 99, 7848-7853.
    • Kucharik, C. J., Foley, J. A., Deline, C., Fisher, V. A., Coe, M. T., Lenters, J. D., Young-Molling, C., Ramankutty, N., Norman, J. M. and Gower, S. T. 2000. Testing the performance of a Dynamic Global Vegetation Model: Water balance, carbon balance, and vegetation structure. Global Biogeochem. Cycles, 14, 795-825.
    • Kurz, W. A. and Apps, M. J. 1999. A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol. Appl. 9, 526-547.
    • Kuusela, K. 1994. Forest resources in Europe 1950-90. Cambridge University Press, New York.
    • Le Que´re´, C., Aumont, O., Bopp, L., Bousquet, P., Ciais, P., Francey, R., Heimann, M., Keeling, R. F., Kheshgi, H., Peylin, P., Piper, S. C., Prentice, I. C. and Rayner, P. J. (2003). Two decades of ocean CO2 sink and variability. Tellus 55B, (this issue).
    • Lloyd, J. 1999. The CO2 dependence of photosynthesis, plant growth responses to elevated CO2 concentrations and their interaction with soil nutrient status, II. Temperate and boreal forest productivity and the combined effects of increasing CO2 concentrations and increased nitrogen deposition at a global scale. Funct. Ecol. 13, 439-459.
    • Lloyd, J. and Farquhar, G. D. 1996. The CO2 dependence of photosynthesis, plant growth responses to elevated atmospheric CO2 concentrations and their interaction with soil nutrient status. I. General principles and forest ecosystems. Funct. Ecol. 10, 4-32.
    • Luo, Y. Q., Wan, S. Q., Hui, D. F. and Wallace, L. L. 2001. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622-625.
    • Malhi, Y. and Grace, J. 2000. Tropical forests and atmospheric carbon dioxide. Trends Ecol. Evolut. 15, 332-337.
    • Manning, A. C. 2001. Temporal variability of atmospheric oxygen from both continuous measurements and a flask sampling network: Tools for studying the global carbon cycle. Ph.D. Thesis, University of California, San Diego, La Jolla, California, USA.
    • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J. and Wittenberg, U. 2001. Carbon balance of the terrestrial biosphere in the twentieth century: Analyses of CO2, climate and land use effects with four processbased ecosystem models. Glob. Biogeochem. Cycles 15, 183-206.
    • Nadelhoffer, K. J., Emmett, B. A. and Gundersen, P. 1999. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145-148.
    • Nilsson, S., Shvidenko, A., Stolbovoi, V., Gluck, M., Jonas, M. and Obersteiner, M. 2000. Full carbon account for Russia, International Institute for Applied Systems Analysis, Laxenburg, Austria. Available at: http://www.iiasa.ac.at/publications/.
    • Oren, R., Ellsworth, D. S., Johnsen, K. H., Phillips, N., Ewers, B. E., Maier, C., Schafer, K. V. R., McCarthy, H., Hendrey, G., McNulty, S. G. and Katul, G. G. 2001. Soil fertility limits carbon sequestration by forest ecosystems in a CO2- enriched atmosphere. Nature 411, 469-472.
    • Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J. L., Toggweiler, J. R., Taylor, N. K., Palmer, J., Gruber, N., Sabine, C. L., Le. Quere, C., Key, R. M. and Boutin, J. 2001. Estimates of anthropogenic carbon uptake from four three- dimensional global ocean models. Global Biogeochem. Cycles 15, 43-60.
    • Pacala, S. W., Hurtt, G. C., Baker, D., Peylin, P., Houghton, R. A., Birdsey, R. A., Heath, L., Sundquist, E. T., Stallard, R. F., Ciais, P., Moorcroft, P., Caspersen, J. P., Shevliakova, E., Moore, B., Kohlmaier, G., Holland, E., Gloor, M., Harmon, M. E., Fan, S. M., Sarmiento, J. L., Goodale, C. L., Schimel, D. and Field, C. B. 2001. Consistent land- and atmosphere-based US carbon sink estimates. Science 292, 2316-2320.
    • Peylin, P., Baker, D., Sarmiento, J., Ciais, P. and Bousquet, P. 2002. Influence of transport uncertainty on annual mean versus seasonal inversion of atmospheric CO2 data. J. Geophys. Res. -Atmos. (in press)
    • Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V., Vasquez, R. M., Laurance, S. G., Ferreira, L. V., Stern, M., Brown, S. and Grace, J. 1998. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 282, 439-442.
    • Phillips, O. L., Malhi, Y., Vinceti, B., Baker, T., Lewis, S. L., Higuchi, N., Laurance, W. F., Nu´n˜ez Vargas, P., Va´zquez Martinez, R., Laurance, S., Ferreira, L. V., Stern, M., Brown, S. and Grace, J. 2002. Changes in growth of tropical forests: evaluating potential biases. Ecol. Appl. 12, 576-587.
    • Plattner, G. K., Joos, F., Stocker, T. F. and Marchal, O. 2001. Feedback mechanisms and sensitivities of ocean carbon uptake under global warming. Tellus 53B, 564-592.
    • Plattner, G. K., Joos, F. and Stocker, T. F. 2002. Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem. Cycles (in press).
    • Prentice, I. C., Heimann, M. and Sitch, S. 2000. The carbon balance of the terrestrial biosphere: Ecosystem models and atmospheric observations. Eco. Appl. 10, 1553-1573.
    • Prentice, I. C., Farquhar, G., Fashm, M., Goulden, M., Heimann, M., Jaramillo, V., Kheshgi, H., Le Que´re´, C. and Scholes, R. J. 2001. The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. (eds. J.T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell and C. A. Johnson), Cambridge University Press, Cambridge, 183-237.
    • Ramankutty, N. and Foley, J. A. 1999. Estimating historical changes in global land cover: Croplands from 1700 to 1992. Global Biogeochem. Cycles 13, 997-1027.
    • Rayner, P. J., Enting, I. G., Francey, R. J. and Langenfelds, R. 1999. Reconstructing the recent carbon cycle from atmospheric CO2, delta C-13 and O2/N2 observations. Tellus 51B, 213-232.
    • Rustad, L. E., Campbell, J. L., Marion, G. M., Norby, R. J., Mitchell, M. J., Hartley, A. E., Cornelissen, J. H. C. and Gurevitch, J. 2001. A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562.
    • Saugier, B. and Roy, J. 2001. Estimations of global terrestrial productivity: converging towards a single number? In: Global terrestrial productivity: past, present and future. Academic Press, New York.
    • Schimel, D., Alves, D., Enting, I., Heimann, M., Joos, F., Raynaud, D. and Wigley, T. 1996. CO2 and the carbon cycle. In: Climate Change 1995: The science of climate change, Contribution of WG1 to the Second Assessment Report of the IPCC. (eds. J. T. Houghton, L. G. M. Meira Filho, B. A. Callender, N. Harris, A. Kattenberg and K. Maskell), Cambridge University Press, Cambridge, 65- 86.
    • Schimel, D., Melillo, J., Tian, H. Q., McGuire, A. D., Kicklighter, D., Kittel, T., Rosenbloom, N., Running, S., Thornton, P., Ojima, D., Parton, W., Kelly, R., Sykes, M., Neilson, R. and Rizzo, B. 2000. Contribution of increasing CO2 and climate to carbon storage by ecosystems in the United States. Science 287 2004-2006.
    • Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. J., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L. and Wirth, C. 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169-172.
    • Shvidenko, A. and Nilsson, S. 2000. Fire and the carbon budget of Russian forests. In: Fire, climate change and carbon cycling in the boreal forest. (eds. E. Kasischke and B. J. Stocks), Springer-Verlag, New York, 289-331.
    • Shvidenko, A., Nilsson, S. and Shepashenko, G. 2000. Dynamics of phytomass and net primary production of Russian forests in 1961-1988: an attempt of aggregated estimation. In: Biodiversity and dynamics of ecosystems in North Eurasia. Vol. 4. Forest and soil ecosystems of North Eurasia. Russian Academy of Sciences, Novosibirsk, 110- 112.
    • Shvidenko, A. and Nilsson, S. 2002. Dynamics of Russian forests during 1961-1998 and the carbon budget: implication of long period forest inventory data. Clim. Change (in press).
    • Sitch, S. 2000. The role of vegetation dynamics in the control of atmospheric CO2 content, Ph.D. Thesis, University of Lund, Sweden.
    • Spiecker, H., Mielika¨inen, K., Ko¨hl, M. and Skovsgaard, J. P. 1996. Growth trends in European forests, Springer Verlag, Berlin.
    • Tans, P. P., Conway, T. J. and Nakawaza, T. 1989. Latitudinal distribution of the sources and sinks of atmospheric carbon-dioxide derived from surface observations and an atmospheric transport model. J. Geophys. Res. -Atmos. 94, 5151-5172.
    • Tans, P. P., Berry, J. A. and Keeling, R. F. 1993. Oceanic C13/C12 observations - a new window on ocean CO2 uptake. Global Biogeochem. Cycles 7, 353-368.
    • Tian, H., Melillo, J. M., Kicklighter, D. W., McGuire, A. D. and Helfrich, J. 1999. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the United States. Tellus 51B, 414-452.
    • Trolier, M., White, J. W. C., Tans, P. P., Masarie, K. A. and Gemery, P. A. 1996. Monitoring the isotopic composition of atmospheric CO2: Measurements from the NOAA Global Air Sampling Network. J. Geophys. Res. -Atmos. 101, 25897-25916.
    • Trumbore, S. E., Chadwick, O. A. and Amundson, R. 1996. Rapid exchange between soil carbon and atmospheric carbon dioxide driven by temperature change. Science 272, 393-396.
    • UN-ECE/FAO, 2000. Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand (industrialized temperate/boreal countries) UN-ECE/FAO Contribution to the Global Forest Resources Assessment 2000. (United Nations Economics Commission for Europe/Food and Agricultural Organisation on the United Nations). In: Geneva Timber and Forest Study Papers, No. 17. United Nations, New York, Geneva. 445 pp.
    • UNFCCC (United Nations Framework Convention on Climate Change), 2000. Methodological issue. Land-use, land-use change and forestry. Synthesis Report on National Greenhouse Gas Infromation Reported by Annexe I Parties for the Land-use Change and Forestry Sector and Agriclutural Soils Category. Note by the Secretariat, Sbsidiary Body for Scientific and Technical Advice, FCCC/SBSTA/2000/3, Bonn, Germany.
    • United States Government, 2000. United States submission on land use, land-use change and forestry, U.S. Government Report to the United Nations Framework Convention on Climate Change.
    • Valentini, R., Matteucci, G., Dolman, A.J., Schulze, E.D., Rebmann, C., Moors, E.J., Granier, A., Gross, P., Jensen, N.O., Pilegaard, K., Lindroth, A., Grelle, A., Bernhofer, C., Grunwald, T., Aubinet, M., Ceulemans, R., Kowalski, A.S., Vesala, T., Rannik, U., Berbigier, P., Loustau, D., Guomundsson, J., Thorgeirsson, H., Ibrom, A., Morgenstern, K., Clement, R., Moncrieff, J., Montagnani, L., Minerbi, S. and Jarvis, P.G. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from