Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wu, Guangjian; Xu, Tianli; Zhang, Xuelei; Zhang, Chenglong; Yan, Ni (2016)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: goethite, Meteorology. Climatology, QC851-999, diffuse reflectance spectroscopy, Tibetan Plateau, ice core dust, hematite, ice core dust; diffuse reflectance spectroscopy; hematite; goethite; Tibetan Plateau
Goethite (Gt) and hematite (Hm) are the most abundant forms of iron oxides in dust and the major light absorbers in the shortwave spectrum in air and snow. Diffuse reflectance spectrometry was performed to investigate the reflectance spectra of goethite and hematite in dust particles from ice cores, aerosol samples and glacier cryoconite on the northern and central Tibetan Plateau. The results showed that two peaks in the first derivative value of the spectra at 430 and 560 nm were determined to be goethite and hematite, respectively. The high iron content samples have a higher first derivative value, and prominent and much more distinct peaks for Hm and Gt. We propose that the strength of the Hm and Gt peaks may probe the iron content, and then in our samples hematite has a stronger correlation than goethite. However, when the iron content reaches a threshold, the iron oxides have little or no impact on the reflectance spectra. The fine fraction of glacier dust has a greater abundance of iron, and the first derivative values of hematite are higher than goethite, indicating that hematite might be concentrated in the fine fraction. The distinguishable differences in the Hm/Gt ratio among these ice core samples and other aerosol data indicate the regional to continental difference in composition, which can be used to simplify the iron oxides in snow radiation models.Keywords: ice core dust, diffuse reflectance spectroscopy, hematite, goethite, Tibetan Plateau(Published: 3 March 2016)Citation: Tellus B 2016, 68, 29191, http://dx.doi.org/10.3402/tellusb.v68.29191
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arimoto, R., Balsam, W. and Schloesslin, C. 2002. Visible spectroscopy of aerosol particles collected on filter: iron-oxide minerals. Atmos. Environ. 36(1), 89 96. DOI: http://dx.doi.org/ 10.1016/S1352-2310(01)00465-4
    • Balsam, W., Ji, J., Renock, D., Deaton, B. C. and Williams, E. 2014. Determining hematite content from NUV/Vis/NIR spectra: limits of detection. Am. Mineral. 99(11 12), 2280 2291. DOI: http://dx.doi.org/10.2138/am-2014-4878
    • Balsam, W. L. and Damuth, J. E. 2000. Further investigations of shipboard vs. shore-based spectral data: implications for interpreting Leg 164 sediment composition. In: Proceedings ODP Scientific Results (eds. C. K. Paull, R. Matsumoto, P. J. Wallace, W. P. Dillon) Vol. 164, Ocean Drilling Program, Texas A&M University, Texas, TX, pp. 313 324.
    • Balsam, W. L. and Deaton, B. C. 1991. Sediment dispersal in the Atlantic Ocean: evaluation by visible light spectra. Rev. Aquat. Sci. 4, 411 447.
    • Bhargava, D. and Mariam, D. W. 1991. Effects of suspended particle size and concentration on reflectance measurements. Photogramm. Eng. Rem. S. 57(5), 519 529. DOI: http://dx.doi. org/10.1007/BF02999210
    • Formenti, P., Caquineau, S., Chevaillier, S., Klaver, A., Desboeufs, K. and co-authors. 2014. Dominance of goethite over hematite in iron oxides of mineral dust from Western Africa: quantitative partitioning by X-ray absorption spectroscopy. J. Geophys. Res. Atmos. 119, 12740 12754. DOI: http://dx.doi.org/10.1002/2014 JD021668
    • Formenti, P., Rajot, J. L., Desboeufs, K., Caquineau, S., Chevaillier, S. and co-authors. 2008. Regional variability of the composition of mineral dust from western Africa: Results from the AMMA SOP0/DABEX and DODO field campaigns J. Geophys. Res. 113, D00C13, DOI: http://dx.doi.org/10.1029/ 2008jd009903
    • Ji, J. F., Balsam, W. L., Chen, J. and Liu, L. W. 2002. Rapid and quantitative measurement of hematite and goethite in the Chinese loess-paleosol sequences by diffuse reflectance spectroscopy. Clay Clay Miner. 50, 208 216.
    • Jiang, Z. X., Liu, Q. S., Colombo, C., Barron, V. and Torrent, J. 2013. Quantification of Al-goethite from diffuse reflectance spectroscopy and magnetic methods. Geophys. J. Int. 196, 131 144. DOI: http://dx.doi.org/10.1093/gji/ggt377
    • Jickells, T. D., An, Z., Andersen, K. K., Baker, A. R., Bergametti, G. and co-authors. 2005. Global iron connections between desert dust, ocean biogeochemistry, and climate. Science. 308, 67 71. DOI: http://dx.doi.org/10.1126/science.1105959
    • Kaspari, S., Painter, T., Gysel, M., Skiles, S. and Schwikowski, M. 2014. Seasonal and elevational variations of black carbon and dust in snow and ice in the Solu-Khumbu, Nepal and estimated radiative forcings. Atmos. Chem. Phys. 14, 8089 8103. DOI: http://dx.doi.org/10.5194/acp-14-8089-2014
    • Lafon, S., Sokolik, I. N., Rajot, J. L., Caquineau, S. and Gaudichet, A. 2006. Characterization of iron oxides in mineral dust aerosols: implications for light absorption. J. Geophys. Res. 111, D21207. DOI: http://dx.doi.org/10.1029/2005JD007016
    • Lazaro, F. J., Gutierrez, L., Barron, V. and Gelado, M. D. 2008. The speciation of iron in desert dust collected in Gran Canaria (Canary Islands): combined chemical, magnetic and optical analysis. Atmos. Environ. 42, 8987 8996. DOI: http://dx.doi. org/10.1016/j.atmosenv.2008.09.035
    • Linke, C., Mohler, O., Veres, A., Mohacsi, A., Bozoki, Z. and co-authors. 2006. Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study. Atmos. Chem. Phys. 6, 3315 3323. DOI: http://dx.doi. org/10.5194/acp-6-3315-2006
    • Mishra, S. K. and Tripathi, S. N. 2008. Modeling optical properties of mineral dust over the Indian Desert. J. Geophys. Res. 113, D23201. DOI: http://dx.doi.org/10.1029/2008JD010048
    • Moosmuller, H., Engelbrecht, J. P., Skiba, M., Frey, G., Chakrabarty, R. K. and co-authors. 2012. Single scattering albedo of fine mineral dust aerosols controlled by iron concentration. J. Geophys. Res. 117, D11210. DOI: http://dx.doi.org/10.1029/2011JD016909
    • Reynolds, R. L., Goldstein, H. L., Moskowitz, B. M., Bryant, A. C., Skiles, S. M. and co-authors. 2014. Composition of dust deposited to snow cover in the Wasatch Range (Utah, USA): controls on radiative properties of snow cover and comparison to some dustsource sediments. Aeolian Res. 15, 73 90. DOI: http://dx.doi.org/10. 1016/j.aeolia.2013.08.001
    • Scheinost, A., Chavernas, A., Barron, V. and Torrent, J. 1998. Use and limitations of second-derivative diffuse reflectance spectroscopy in the visible to near-infrared range to identify and quantity Fe oxide minerals in soils. Clay Clay Miner. 46(5), 528 536. DOI: http://dx. doi.org/10.1346/CCMN.1998.0460506
    • Shen, Z. X., Cao, J. J., Zhang, X. Y., Arimoto, R., Ji, J. F. and co-authors. 2006. Spectroscopic analysis of iron-oxide minerals in aerosol particles from northern China. Sci. Total Environ. 367, 899 907. DOI: http://dx.doi.org/10.1016/j.scitotenv.2006. 01.003
    • Shi, Z., Krom, M. D., Bonneville, S., Baker, A. R., Bristow, C. and coauthors. 2011. Influence of chemical weathering and aging of iron oxides on the potential iron solubility of Saharan dust during simulated atmospheric processing. Global Biogeochem. Cycles 25, GB2010. DOI: http://dx.doi.org/10.1029/2010GB003837
    • Shi, Z., Krom, M. D., Jickells, T. D., Boneville, S., Carslaw, K. S. and co-authors. 2012. Impacts on iron solubility in the mineral dust by processes in the source region and the atmosphere: a review. Aeolian Res. 5, 21 42. DOI: http://dx.doi.org/10.1016/j.aeolia.2012.03.001
    • Sokolik, I. N. and Toon, O. B. 1999. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. 104, 9423 9444. DOI: http://dx.doi.org/10.1029/1998JD200048
    • Stolz, M. R. and Ram, M. 2005. Using laser-light scattering to measure impurities, bubbles, and imperfections in ice cores. J. Geophys. Res. 110, D11209. DOI: http://dx.doi.org/10.1029/ 2004JD005589
    • Taylor, S. R. and McLennan, S. M. 1985. The continental crust: its composition and evolution. Rev. Geophys. 33, 241 265. DOI: http://dx.doi.org/10.1029/95RG00262
    • Wang, X., Doherty, S. J. and Huang, J. 2013. Black carbon and other light-absorbing impurities in snow across Northern China. J. Geophys. Res. Atmos. 118, 1471 1492. DOI: http://dx.doi.org/ 10.1029/2012JD018291
    • Wu, G. J., Xu, B. Q., Zhang, C. L., Gao, S. P. and Yao, T. D. 2009. Geochemistry of dust aerosol over the Eastern Pamirs. Geochim. Cosmochim. Acta 73(4), 977 989. DOI: http://dx.doi. org/10.1016/j.gca.2008.11.022
    • Wu, G. J., Zhang, C. L., Li, Z. Q., Zhang, X. L. and Gao, S. P. 2012. Iron content and solubility in dust from high-alpine snow along a north-south transect of High Asia. Tellus B 64, 17735. DOI: http://dx.doi.org/10.3402/tellusb.v64i0.17735
    • Wu, G. J., Zhang, C. L., Zhang, X. L., Tian, L. D. and Yao, T. D. 2010. Sr and Nd isotopic composition of dust in Dunde ice core, Northern China: implications for source tracing and use as an analogue of long-range transported Asian dust. Earth Planet. Sci. Lett. 299(3 4), 409 416. DOI: http://dx.doi.org/10.1016/j. epsl.2010.09.021
    • Wu, G. J., Zhang, C. L., Zhang, X. L., Xu, T. L., Yan, N. and co-authors. 2015. The environmental implications for dust in high-alpine snow and ice cores in Asian mountains. Global Planet. Change 124, 22 29. DOI: http://dx.doi.org/10.1016/j. gloplacha.2014.11.007
    • Zhang, X. L., Wu, G. J., Zhang, C. L., Xu, T. L. and Zhou, Q. Q. 2015. What's the real role of iron-oxides in the optical properties of dust aerosols? Atmos. Chem. Phys. Discuss. 15, 5619 5662. DOI: http://dx.doi.org/10.5194/acpd-15-5619-2015
    • Zhang, X. Y., Shen, Z. B., Zhang, G. Y., Chen, T. and Liu, H. Y. 1996. Remote mineral aerosols in Westerlies and their contributions to the Chinese loess. Sci. China (Series D). 39(2), 134 143.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article