LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jonsell, Ulf; Hansson, Margareta E.; Mörth, Carl-Magnus; Torssander, Peter (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Sulfate deposited onto the Antarctic ice sheet originates from a mixture of sulfur sources. Two 100 m long ice cores from Dronning Maud Land have been studied by means of sulfur isotopic analysis and detailed ion analysis to reveal temporal and spatial differences in the influencing sulfur source. The two ice cores represent the coastal area and the polar plateau, respectively. The isotopic signals were similar within each ice core, indicating no temporal change of influencing sources during the last 1100 yr. The mean values at the two different sites were also similar: 14.6 ± 0.3%o and 14.7 ± 0.3‰, respectively.The similarity remains between calculated non-sea-salt values when a sulfate-depleted sea-salt aerosol is assumed in the costal core. When the influence of sporadic explosive volcanic eruptions is subtracted from the signal, the isotopic value from the polar plateau(15.4 ± 0.6‰) is significantly lower than prescribed values for marine biogenic sulfur. This suggests that one or more additional sources contribute to the sulfate budget. Several possible contributors are discussed in the context of former sulfur isotopic signals presented from Antarctica.DOI: 10.1111/j.1600-0889.2005.00157.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander, B., Thiemens, M. H., Farquhar, J., Kaufman, A. J., Savarino, J. and co-author 2003. East Antarctic ice core sulfur isotope measurements over a complete glacial-interglacial cycle. J. Geophys. Res. Atmos. 108(24), 4786, doi:10.1029/2003JD003513.
    • Aristarain, A. J. and Delmas, R. J. 2002. Snow chemistry measurements on James Ross island (Antarctic Peninsula) showing sea-salt aerosol modifications. Atmos. Environ. 36(4), 765-772.
    • Bamber, J. L. and Bindschadler, R. A. 1997. An improved elevation dataset for climate and ice-sheet modelling: validation with satellite imagery. Ann. Glaciol. 25, 439-444.
    • Basile, I., Grousset, F. E., Revel, M., Petit, J. R., Biscaye, P. E. and co-author 1997. Patagonian origin of glacial dust deposited in east Antarctica (Vostok and Dome C) during glacial stages 2, 4 and 6. Earth Planet Sci. Lett. 146(3-4), 573-589.
    • Basile, I., Petit, J.-R., Tourun, S., Grousset, F. and Barkov, N. 2001. Volcanic layers in Antarctic (Vostok) ice cores: source identification and atmospheric implications. J. Geophys. Res. Atmos. 106(23) 31 915- 31 931.
    • Calhoun, J. A., Bates, T. S. and Charlson, R. J. 1991. Sulfur isotope measurements of submicrometer sulfate aerosol particles over the Pacific Ocean. Geophys. Res. Lett. 18(10), 1877-1880.
    • Castleman, A. W.-Jr., Munkelwitz, H. R. and Manowitz, B. 1973. Contribution of volcanic sulfur compounds to the stratospheric aerosol layer. Nature 244, 345-346.
    • Curran, M. A. J., Palmer, A. S., Van, O. T. D., Morgan, V. I., Phillips, K. L. and co-authors 2002. Post-depositional movement of methanesulphonic acid at Law Dome, Antarctica, and the influence of accumulation rate. Ann. Glaciol. 35, 333-339.
    • Delmas, R. J., Legrand, M., Aristarain, A. J. and Zanolini, F. 1985. Volcanic deposits in Antarctic snow and ice. J. Geophys. Res. Atmos. 90(7), 2901-2920.
    • Delmas, R. J., Wagnon, P., Goto, A. K., Kamiyama, K. and Watanabe, O. 2003. Evidence for the loss of snow-deposited MSA to the interstitial gaseous phase in central Antarctic firn. Tellus 55B, 71-79.
    • Delmonte, B., Basile-Doelsch, I., Petit, J.-R., Maggi, V., Revel-Rolland, M. and co-authors 2004. Comparing the Epica and Vostok records during the last 220 000 years: stratigraphical correlation and provenance in glacial periods. Earth Sci. Rev. 66, 63-87.
    • EPICA Community Members. 2004. Eight glacial cycles from an Antarctic ice core. Nature 429(6992), 623-628.
    • Eriksen, T. E. 1972. Sulfur isotope effects. Acta Chem. Scand. 26, 573- 580.
    • Georgii, H. W. and Warneck, P. 1999. Chemistry of the tropospheric aerosol and of clouds. In: Global Aspects of Atmospheric Chemistry (ed. R. Zellner). Springer, Darmstadt, 111-180.
    • Hall, J. S. and Wolff, E. W. 1998. Causes of seasonal and daily variations in aerosol sea-salt concentrations at a coastal Antarctic station. Atmos. Environ. 32(21), 3669-3677.
    • Holmlund, P., Gjerde, K., Gundestrup, N., Hansson, M., Isaksson, E. and co-authors 2000. Spatial gradients in snow layering and 10 m temperatures at two EPICA-Dronning Maud Land (Antarctica) presite-survey drill sites. Ann. Glaciol. 30, 13-19.
    • IPCC. 2001. Climate Change 2001: the Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
    • Jacob, D. J. 2003. The oxidizing power of the atmosphere. In: Handbook of Weather, Climate, and Water: Atmospheric Chemistry, Hydrology and Societal Impacts (eds T. D. Potter and B. R. Colman). Wiley, Hoboken, NJ, 29-46.
    • Karl o¨f, L., Winther, J. G., Isaksson, E., Kohler, J., Pinglot, J. F. and coauthors 2000. A 1500 year record of accumulation at Amundsenisen, Western Dronning Maud Land, Antarctica, derived from electrical and radioactive measurements on a 120 m ice core. J. Geophys. Res. Atmos. 105(10), 12 471-12 483.
    • Kerminen, V. M., Teinila, K. and Hillamo, R. 2000. Chemistry of seasalt particles in the summer Antarctic atmosphere. Atmos. Environ. 34(17), 2817-2825.
    • Legrand, M. 1995. Sulphur-derived species in polar ice: a review. In: Ice Core Studies of Global Biogeochemical Cycles (ed. R. J. Delmas). Springer, New York, 91-115.
    • Legrand, M., Feniet-Saigne, C., Saltzman, E. S., Germain, C., Barkov, N. I. and co-author 1991. Ice-core record of oceanic emissions of dimethylsulphide during the last climate cycle. Nature 350(6314), 144-146.
    • Legrand, M., Hammer, C., DeAngelis, M., Savarino, J., Delmas, R. and co-authors 1997. Sulfur-containing species (methanesulfonate and SO4) over the last climatic cycle in the Greenland ice core project (central Greenland) ice core. J. Geophys. Res. Oceans 102(12), 26 663- 26 679.
    • Legrand, M. and Pasteur, E. C. 1998. Methanesulfonicacid to non-seasalt sulfate ratio in coastal Antarctic aerosol and surface snow. J. Geophys. Res. Atmos. 103(9), 10 991-11 006.
    • Leung, F.-Y., Colussi, A. J. and Hoffman, M. R. 2001. Sulfur fractionation in the gas-phase oxidation of sulfur dioxide initiated by hydroxy radicals. J. Phys. Chem. A 105, 8073-8076.
    • Luttinen, A. V. and Furnes, H. 2000. Flood basalts of Vestfjella: Jurassic magmatism across an Archaean-Proterozoic lithospheric boundary in Dronning Maud Land, Antarctica. J. Petrol. 41(8), 1271-1305.
    • Mast, M. A., Turk, J. T., Ingersoll, G. P., Clow, D. W. and Kester, C. L. 2001. Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks. Atmos. Environ. 35(19), 3303-3313.
    • Minikin, A., Wagenbach, D., Graf, W. and Kipfstuhl, J. 1994. Spatial and seasonal variations of the snow chemistry at the central FilchnerRonne ice shelf, Antarctica. Ann. Glaciol. 20, 283-290.
    • Minikin, A., Legrand, M., Hall, J., Wagenbach, D., Kleefeld, C. and co-authors 1998. Sulfur-containing species (sulfate and methanesulfonate) in coastal Antarctic aerosol and precipitation. J. Geophys. Res. Atmos. 103(9), 10 975-10 990.
    • Newman, J. H., Forrest, J. and Monowitz, B. 1975. The application of an isotopic ratio technique to a study of the atmospheric oxidation of sulfur dioxide in the plume from an oil fired power plant. Atmos. Environ. 9, 959-968.
    • Newman, L., Krouse, H. R. and Grinenko, V. A. 1991. Sulphur isotope variations in the Atmosphere. In: Stable Isotopes. Natural and Anthropogenic Sulphur in the Environment (ed. H. R. Krouse). Wiley, Chichester, 133-176.
    • Nielsen, H. 1974. Isotopic composition of the major contributors to atmospheric sulfur. Tellus 26, 213-221.
    • Nielsen, H., Pilot, J., Grinenko, L. N., Grinenko, V. A., Lein, A. Y. and co-authors 1991. Lithospheric sources of sulphur. In: Stable Isotopes. Natural and Anthropogenic Sulphur in the Environment (ed. H. R. Krouse). Wiley, Chichester, 65-132.
    • Norman, A. L., Barrie, L. A., Toom, S. D., Sirois, A., Krouse, H. R. and co-authors 1999. Sources of aerosol sulphate at Alert: apportionment using stable isotopes. J. Geophys. Res. Atmos 104(9), 11 619-11 631.
    • Nriagu, J. O., Rees, C. E., Mekhtiyeva, V. L., Lein, A. Y., Fritz, P. and co-authors 1991. Hydrosphere. In: Stable Isotopes. Natural and Anthropogenic Sulphur in the Environment (ed. H. R. Krouse). Wiley, Chichester, 177-266.
    • Pasteur, E. C. and Mulvaney, R. 2000. Migration of methane sulphonate in Antarctic firn and ice. J. Geophys. Res. Atmos. 105(9), 11 525- 11 534.
    • Patris, N., Delmas, R. J. and Jouzel, J. 2000a. Isotopic signatures of sulfur in shallow Antarctic ice cores. J. Geophys. Res. Atmos. 105(6), 7071-7078.
    • Patris, N., Delmas, R. J., Legrand, M., De Angelis, M., Ferron, F. A., Stievenard, M. and Jouzel, J. 2002. First sulfur isotope measurements in central Greenland ice cores along the preindustrial and industrial periods. J. Geophys. Res. Atmos. 107(D11), 4115, doi:10.1029/2001JD000672.
    • Patris, N., Mihalopoulos, N., Baboukas, E. D. and Jouzel, J. 2000b. Isotopic composition of sulfur in size-resolved marine aerosols above the Atlantic Ocean. J. Geophys. Res. Atmos. 105(11), 14 449- 14 457.
    • Peterson, R. C., Kyser, K., Pagano, R. and Klassen, K. 2003. Sulfur isotope analysis for the identification of sulfur sources. Mineral. Rec. 34(2), 171-175.
    • Pruett, E. P., Kreutz, K. P., Mayewski, P. A. and Kurbatov, A. 2005. Sulfur isotopic measurements from a west Antarctic ice core: implications for sulfate source and transport. Ann. Glaciol. 39, in press.
    • Rankin, A. M., Auld, V. and Wolff, E. W. 2000. Frost flowers as a source of fractionated sea salt aerosol in the Polar Regions. Geophys. Res. Lett. 27(21), 3469-3472.
    • Rees, C. E., Jenkins, W. J. and Monster, J. 1978. The sulphur isotopic composition of ocean water sulphate. Geochim. Cosmochim. Acta 42(4), 377-382.
    • Ruth, U., Wagenbach, D., Bigler, M., Steffensen, J. P., R o¨thlisberger, R. and co-author 2002. High-resolution microparticle profiles at NorthGRIP, Greenland: case studies of the calcium-dust relationship. Ann. Glaciol. 235, 237-242.
    • Sommer, S., Appenzeller, C., R o¨thlisberger, R., Hutterli, M. A., Stauffer, B. and co-authors 2000. Glacio-chemical study spanning the past 2 kyr on three ice cores from Dronning Maud Land, Antarctica 1. Annually resolved accumulation rates. J. Geophys. Res. Atmos. 105(24), 29 411- 29 421.
    • Steffensen, J. P. 1997. The size distribution of microparticles from selected segments of the Greenland ice core project ice core representing different climatic periods. J. Geophys. Res. Oceans. 102(12), 26 755- 26 763.
    • Tanaka, N., Rye, D. M., Yitian, X. and Lasaga, A. C. 1994. Use of stable sulfur isotope systematics for evaluating oxidation reaction pathways and in-cloud-scavenging of sulfur dioxide in the atmosphere. Geophys. Res. Lett. 21(14), 1519-1522.
    • Traufetter, F., Oerter, H., Fischer, H., Weller, R. and Miller, H. 2004. Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyr in snow pits and firn cores from Amundsenisen, Antarctica. J. Glaciol. 50(168), 137-146.
    • Turekian, V. C., Macko, S. A. and Keene, W. C. 2001. Application of stable sulfur isotopes to differentiate sources of size-resolved particulate sulfate in polluted marine air at Bermuda during spring. Geophys. Res. Lett. 28(8), 1491-1494.
    • Wagenbach, D., Ducroz, F., Mulvaney, R., Keck, L., Minikin, A. and coauthors 1998. Sea-salt aerosol in coastal Antarctic regions. J. Geophys. Res. Atmos. 103(9), 10 961-10 974.
    • Wagnon, P., Delmas, R. J. and Legrand, M. 1999. Loss of volatile acid species from upper firn layers at Vostok, Antarctica. J. Geophys. Res. Atmos. 104(3), 3423-3431.
    • Wolff, E. W., Rankin, A. M. and R o¨thlisberger, R. 2003. An ice core indicator of Antarctic sea ice production? Geophys. Res. Lett. 30(22), CLM 4-1-4-4.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from