LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tsang, Edman; Zhou, Xiwen; Ye, Lin; Edman Tsang, Shik Chi (2012)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: niobium oxide; nanostructures; semi-conductor; crystal; facet; synthesis; catalysis
Niobium pentoxide (Nb2O5) has long been known to catalyze unique acid induced reactions, redox reductions and photo-catalytic reactions, etc. Recently, there have been significant advancements in tailoring the oxide materials with controlled structures and morphologies using nano-chemical synthesis by the help of surfactant or stabilizer for optimal catalytic performance. In this short review, we will particularly highlight these synthetic methods for preparation of Nb2O5 nanostructures, their potential applications in catalysis and their structure-activity relationships.Keywords: niobium oxide; nanostructures; semi-conductor; crystal; facet; synthesis; catalysis(Published: 7 August 2012)Citation: Nano Reviews 2012, 3: 17631 - http://dx.doi.org/10.3402/nano.v3i0.17631
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Aegerter MA. Sol gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells 2001; 68: 422.
    • 2. Wang YD, Yang LF, Zhou ZL, Li YF, Wu XH. Effects of calcination temperature on latice constants and gas sensing properties of Nb2O5. Mater Lett 2001; 49: 277.
    • 3. Carniti P, Gervasini A, Marzo M. Dispersed NbOx catalytic phases in silica matrixes: influence of niobium concentration and preparative route. J Phys Chem C 2008; 112: 14064.
    • 4. Mujawar SH, Inamdar AI, Patil SB, Patil PS. Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 2006; 177: 3333.
    • 5. Jose R, Thavasi V, Ramakrishna S. Metal oxides for dyesensitized solar cells. J Am Ceram Soc 2009; 92: 289.
    • 6. Ahn KS, Kang MS, Lee JK, Shin BC, Lee JW. Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Appl Phys Lett 2006; 89: 013103.
    • 7. Prado AGS, Bolzon LB, Pedroso CP, Moura AO, Costa LL. Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl Catal B Environ 2008; 82: 219 24.
    • 8. Wu J, Li J, Lu X, Zhang L, Yao J, Zhang F, et al. A one-pot method to grow pyrocholore H4Nb2O7-octahedron-based photocatalyst. J Mater Chem 2010; 20: 1942 6.
    • 9. Viet AL, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C 2010; 114: 664 71.
    • 10. Scha¨fer H, Gruehn R, Schulte F. The modifications of niobium pentoxide. Angew Chem Int Ed 1966; 5: 40 52.
    • 11. Ikeya T, Senna M. Change in the structure of niobium pentoxide due to mechanical and thermal treatments. J NonCryst Solids 1988; 105: 243 50.
    • 12. Shishido T, Kitano T, Teramura K, Tanaka T. Brønsted acid generation over alumina-supported niobia by calcination at 1173 K. Catal Lett 2009; 129: 383 6.
    • 13. Sumiya S, Oumi Y, Sadakane M, Sano T. Facile preparation of SBA-15-supported niobic acid (Nb2O5 nH2O) catalyst and its catalytic activity. Appl Catal A Gen 2009; 365: 261 7.
    • 14. Zhou Y, Qiu Z, Lu M, Zhang A, Ma Q. Preparation and characterization of porous Nb2O5 nanoparticles. Mater Res Bull 2008; 43: 1363 8.
    • 15. Brayner R, Bozon-Verduraz F. Niobium pentoxide prepared by soft chemical routes: morphology, structure, defects and quantum size effect. Phys Chem Chem Phys 2003; 5: 1457 66.
    • 16. Li Y, Yue B, Yan S, Yang W, Xie Z, Chen Q, et al. Preparation of ethylene glycol via catalytic hydration with highly efficient supported niobia catalyst. Catal Lett 2004; 95: 163 6.
    • 17. Li Y, Yan S, Yue B, Yang W, Xie Z, Chen Q, et al. Selective catalytic hydration of ethylene oxide over niobium oxide supported on a-alumina. Appl Catal A Gen 2004; 272: 305 10.
    • 18. Griesmar P, Papin G, Sanchez C, Livage J. Sol gel route to niobium pentoxide. Chem Mater 1991; 3: 335 9.
    • 19. Ristic´ M, Popovic S, Music S. Sol gel synthesis and characterization of Nb2O5 powders. Mater Lett 2004; 58: 2658 63.
    • 20. Uekawa N, Kudo T, Mori F, Wu YJ, Kakegawa K. Lowtemperature synthesis of niobium oxide nanoparticles from peroxo niobic acid sol. J Colloid Interface Sci 2003; 264: 378 84.
    • 21. Luo H, Wei M, Wei K. Synthesis of Nb2O5 nanorods by a soft chemical process. J Nanomater 2009; 2009: 1 4.
    • 22. George PP, Pol VG, Gedanken A. Synthesis and characterization of Nb2O5@C core-shell nanorods and Nb2O5 nanorods by reacting Nb(OEt)5 via RAPET (reaction under autogenic pressure at elevated temperatures) technique. Nanoscale Res Lett 2007; 2: 17 23.
    • 23. Li L, Deng J, Yu R, Chen J, Wang X, Xing X. Phase evolution in low-dimensional niobium oxide synthesized by a topochemical method. Inorg Chem 2010; 49: 1397 403.
    • 24. Li L, Deng J, Chen J, Sun X, Yu R, Liu G, et al. Wire structure and morphology transformation of niobium oxide and niobates by molten salt synthesis. Chem Mater 2009; 21: 1207 13.
    • 25. Zhou Y, Qiu Z, Lu M, Zhang A, Ma Q. Preparation and spectroscopic properties of Nb2O5 nanorods. J Lumin 2008; 128: 1369 72.
    • 26. Hu W, Liu Z, Tian D, Zhang S, Zhao Y, Yao K. Morphological evolution of Nb2O5 in a solvothermal reaction: from Nb2O5 grains to Nb2O5 nanorods and hexagonal Nb2O5 nanoplatelets. J Wuhan Univ Technol Mater Sci Ed 2009; 24(2): 245 8.
    • 27. Saito K, Kudo A. Controlled synthesis of TT phase niobium pentoxide nanowires showing enhanced photocatalytic properties. Bull Chem Soc Jpn 2009; 82: 1030 4.
    • 28. Le Viet A, Reddy MV, Jose R, Chowdari BVR, Ramakrishna S. Nanostructured Nb2O5 polymorphs by electrospinning for rechargeable lithium batteries. J Phys Chem C 2010; 114: 664 71.
    • 29. Lim JH, Choi J. Formation of niobium oxide nanowires by thermal oxidation. J Ind Eng Chem 2009; 15: 860 4.
    • 30. Wei M, Qi Z, Ichihara M, Zhou H. Synthesis of single-crystal niobium pentoxide nanobelts. Acta Mater 2008; 56: 2488 94.
    • 31. Kobayashi Y, Hata H, Salama M, Mallouk TE. Scrolled sheet precursor route to niobium and tantalum oxide nanotubes. Nano Lett 2007; 7: 2142 5.
    • 32. Yan C, Xue D. Formation of Nb2O5 nanotube arrays through phase transformation. Adv Mater 2008; 20: 1055 8.
    • 33. Yang Z, Li Y, Wu Q, Ren N, Zhang Y, Liu Z, et al. Layered niobic acid with self-exfoliatable nanosheets and adjustable acidity for catalytic hydration of ethylene oxide. J Catal 2011; 280: 247 54.
    • 34. Antonelli DM, Ying JY. Synthesis of a stable hexagonally packed mesoporous niobium oxide molecular sieve through a novel ligand-assisted templating mechanism. Angew Chem Int Ed 1996; 35: 426 30.
    • 35. Yang PD, Zhao DY, Margolese DI, Chmelka BF, Stucky GD. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework. Chem Mater 1999; 11: 2813 26.
    • 36. Lee B, Lu DL, Kondo JN, Domen K. Three-dimensionally ordered mesoporous niobium oxide. J Am Chem Soc 2002; 124: 11256 7.
    • 37. Ye L, Xie S, Yue B, Qian L, Feng S, Tsang SC, et al. Crystalline three-dimensional cubic mesoporous niobium oxide. CrystEngComm 2010; 12: 344 7.
    • 38. Ushikubo T, Koike Y, Wada K, Xie L, Wang D, Guo X. Study of the structure of niobium oxide by X-ray absorption fine structure and surface science techniques. Catal Today 1996; 28: 59 69.
    • 39. Wei M, Wei K, Ichihara M, Zhou H. Nb2O5 nanobelts: a lithium intercalation host with large capacity and high rate capability. Electrochem Commun 2008; 10: 980 3.
    • 40. Zakzeski J, Fan IS, Bell AT. Preparation of benzoyl fluoride from benzotrifluoride catalyzed by niobium oxide. Appl Catal A Gen 2009; 360: 33 7.
    • 41. Srilatha K, Lingaiah N, Prasad PS, Prabhavathi BLA, Prasad RBN, Venkateswar S. Influence of carbon chain length and unsaturation on the esterification activity of fatty acids on Nb2O5 catalyst. Ind Eng Chem Res 2009; 48: 10816 9.
    • 42. Aranda DAG, de Arau J, Goncalves J, Peres JS, Ramos ALD, Ribeiro de Melo Jr CA, et al. The use of acids, niobium oxide, and zeolite catalysts for esterification reactions. J Phys Org Chem 2009; 22: 709 16.
    • 43. Chai SH, Wang HP, Liang Y, Xu B. Sustainable production of acrolein: gas-phase dehydration of glycerol over Nb2O5 catalyst. J Catal 2007; 250: 342 9.
    • 44. Sun Q, Fu Y, Yang H, Auroux A, Shen J. Dehydration of methanol to dimethyl ether over Nb2O5 and NbOPO4 catalysts: microcalorimetric and FT-IR studies. J Mol Catal A Chem 2007; 275: 183 93.
    • 45. Michalkiewicz B, Sren´ scek-Nazzal J, Tabero P, Grzmil B, Narkiewicz U. Selective methane oxidation to formaldehyde using polymorphic T-, M-, and H-forms of niobium(V) oxide as catalysts. Chem Pap 2008; 62: 106 13.
    • 46. Zhang QN, Zhang J, Wua TH, Zhou XP. The oxidation of olefins by t-butyl hydrogen peroxide to prepare 1,2-diols over metal oxide catalysts. Catal Commun 2009; 10: 1279 83.
    • 47. Zielinska B, Srenscek-Nazzal J, Kalenczuk RJ. Photocatalytic hydrogen generation over alkali niobates in the presence of organic compounds. Pol J Chem Technol 2008; 10: 1 3.
    • 48. Esteves A, Oliveira LCA, Ramalho TC, Goncalves M, Anastacio AS, Carvalho HWP. New materials based on modified synthetic Nb2O5 as photocatalyst for oxidation of organic contaminants. Catal Commun 2008; 10: 330 2.
    • 49. Karunakaran C, Dhanalakshmi R. Selectivity in photocatalysis by particulate semiconductors. Cent Eur J Chem 2009; 7: 134 7.
    • 50. Shishido T, Miyatake T, Teramura K, Hitomi Y, Yamashita H, Tanaka T. Mechanism of photooxidation of alcohol over Nb2O5. J Phys Chem C 2009; 113: 18713 8.
    • 51. Ohuchi T, Miyatake T, Hitomi Y, Tanaka T. Liquid phase photooxidation of alcohol over niobium oxide without solvents. Catal Today 2007; 120: 233 9.
    • 52. Chen X, Yu T, Fan X, Zhang H, Li Z, Ye J, et al. Enhanced activity of mesoporous Nb2O5 for photocatalytic hydrogen production. Appl Surf Sci 2007; 253: 8500 6.
    • 53. Ge S, Jia H, Zhao H, Zheng Z, Zhang L. First observation of visible light photocatalytic activity of carbon modified Nb2O5 nanostructures. J Mater Chem 2010; 20: 3052 8.
    • 54. Miyazaki H, Matsui H, Kuwamoto T, Ito S, Karuppuchamy S, Yoshihara M. Synthesis and photocatalytic activities of MnO2- loaded Nb2O5/carbon clusters composite material. Microporous Mesoporous Mater 2009; 118: 518 22.
    • 55. Santana VS, Na´dia RC, Machado F. Photocatalytic degradation of the vinasse under solar radiation. Catal Today 2008; 133 135: 606 10.
    • 56. Onfroy T, Clet G, Houalla M. Correlations between acidity, surface structure, and catalytic activity of niobium oxide supported on zirconia. J Phys Chem B 2005; 109: 14588 94.
    • 57. Tanaka M, Shima H, Yokoi T, Tatsumi T, Kondo JN. Changes in surface property and catalysis of mesoporous Nb2O5 from amorphous to crystalline pore walls. Catal Lett 2011; 141: 283 92.
    • 58. Zhao Y, Eley C, Hu J, Foord JS, Ye L, He H, et al. Shapedependent acidity and photocatalytic activity of Nb2O5 nanocrystals with active TT (001) surface. Angew Chem Int Ed 2012; 51: 3846 9.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from