Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Fertig, Elana J.; Harlim, John; Hunt, Brian R. (2007)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
We formulate a four-dimensional Ensemble Kalman Filter (4D-LETKF) that minimizes a cost function similar to that in a 4D-VAR method. Using perfect model experiments with the Lorenz-96 model, we compare assimilation of simulated asynchronous observations with 4D-VAR and 4D-LETKF. We find that both schemes have comparable error when 4D-LETKF is performed sufficiently frequently and when 4D-VAR is performed over a sufficiently long analysis time window. We explore how the error depends on the time between analyses for 4D-LETKF and the analysis time window for 4D-VAR.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, J. L. 2001. An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev. 129, 2884-2903.
    • Bishop, C. H., Etherton, B. and Majumdar, S. J. 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Wea. Rev. 129, 420-436.
    • Burgers, G., van Leeuwen, P. J. and Evensen, G. 1998. Analysis scheme in the ensemble Kalman filter. Mon. Wea. Rev. 126, 1719-1724.
    • Courtier, P., The´paut, J. N. and Hollingsworth, A. 1994. A strategy for operational implementation of 4D-VAR, using an incremental approach. Quart. J. R. Meteorol. Soc. 120, 1367-1387.
    • Evensen, G. 1994. Sequential data assimilation with a non-linear quasigeostropic model using Monte Carlo Methods to forecast error statistics. J. Geophys. Res. 99, 10143-10162.
    • Evensen, G. and van Leeuwen, P. J. 2000. An ensemble Kalman smoother for nonlinear dynamics. Mon. Wea. Rev. 128, 1852-1867.
    • Houtekamer, P. L. and Mitchell, H. L. 1998. Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev. 126, 796-811.
    • Houtekamer, P. L., Mitchell, H. L., Pellerin, G., Buehner, M., Charron, M, et al. 2005. Atmospheric data assimilation with the ensemble Kalman filter: Results with real observations. Mon. Wea. Rev. 133, 604-620.
    • Houtekamer, P. L. and Mitchell, H. L. 2006. Ensemble Kalman Filtering. Quart. J. R. Meteorol. Soc., in press.
    • Hunt, B. R., Kalnay, E., Kostelich, E. J., Ott, E., Patil, D. J. and co-authors. 2004. Four-dimensional ensemble Kalman filtering. Tellus 56A, 273-277.
    • Lawson, L.M, Spitz, Y. H., Hofmann, E. E. and Long, R. B. 1995. A data assimilation technique applied to a predator-prey model. Bull. Math. Biol. 57(4), 593-617.
    • Le Dimet, F. X. and Talagrand, O. 1986. Variational algorithm for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A, 97-110.
    • Lorenc, A. C. 2003. The potential of the ensemble Kalman filter for NWP-a comparison with 4D-VAR. Quart. J. R. Meteorol. Soc. 129, 3183-3203.
    • Lorenz, E. N. 1996. Predictability-a problem partly solved. In Proceedings on predictability, held at ECMWF on 4-8 September 1995.
    • Ott, E., Hunt, B. R., Szunoygh, I., Zimin, A., Kostelich, E. J., and co-authors. 2004. A local ensemble Kalman filter for atmospheric data assimilation. Tellus 56A, 415-428.
    • Parrish, D. F. and Derber, J. C. 1992. The National Meteorological Center's spectral statistical-interpolation analysis system. Mon. Wea. Rev. 120(8), 1747-1763.
    • Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling, W. V. 1992. Numerical Recipes in Fortran. Cambridge University Press, New York.
    • Rabier, F., The´paut, J. N. and Courtier, P. 1998. Extended assimilation and forecast experiments with a four-dimensional variational assimilation system. Quart. J. R. Meteorol. Soc. 124, 1861-1887.
    • Rabier, F., Ja¨rvien, H., Mahfouf, J. F. and Simmons, A. 2000. The ECMWF operational implementation of four-dimensional variational assimilation: Experimental results with simplified physics. Quart. J. R. Meteorol. Soc. 126, 1148-1170.
    • Szunoygh, I., Kostelich, E. J., Gyarmati, G., Patil, D. J., Kalnay, E., and co-authors. 2005. Assessing a local ensemble Kalman filter: Perfect model experiments with the National Centers for Environmental Prediction global model. Tellus 57A, 528-545.
    • Wang, X., Bishop, C. H. and Julier, S. J. 2004. Which is better, an ensemble of positive-negative pairs or a centered spherical simplex ensemble? Mon. Wea. Rev. 132(7), 1590-1605.
    • Wang, X., Hamill, T.M, Whitaker, J. S. and Bishop, C. H. 2006. A comparison of hybrid ensemble transform Kalman filter-OI and ensemble square-root filter analysis schemes. Mon. Wea. Rev., in press.
    • Whitaker, J. S. and Hamill, T. M. 2002. Ensemble data assimilation without perturbed observations. Mon. Wea. Rev. 130, 1913- 1924.
    • Whitaker, J. S., Compo, G. P., Wei, X. and Hamill, T. M. 2004. Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev. 132, 1190-1200.
    • Whitaker, J. S., Hamill, T. M., Wei, X., Song, Y. and Toth, Z. 2006. Ensemble data assimilation with the NCEP global forecast system. Mon. Wea. Rev., submitted.
    • Zupanski, M. 2005. Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev. 133, 1710-1726.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Applications of Nonlinear D...
  • NSF | Collaborative Research: MSP...

Cite this article

Collected from