LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Winther, Jan-Gunnar; Edvardsen, Kåre; Gerland, Sebastian; Hamre, Børge (2004)
Publisher: Co-Action Publishing
Journal: Polar Research
Languages: English
Types: Article
Subjects:
Initial results from a field experiment on fast ice in Kongsfjorden, Svalbard, in March 2002 are presented. We measured surface reflectance and under-ice irradiance using an advanced, portable spectroradiometer sensitive in the visible and near-infrared parts of the electromagnetic spectrum, i.e. 350-1100 nm. Under-ice irradiance (UV-A, UV-B and photosynthetically active radiation [PAR]) was measured down to depths of 7.5 m by vertical profiling using a six-channel radiometer. We also present model results of wavelength-dependent transmittance of radiation through a combined snow and sea ice layer for various thicknesses of snow. Model results show that the snow and sea ice is more transparent for solar radiation in the PAR region (400-700 nm) than at shorter and longer wavelengths. This is confirmed by the field measurements. Even very thin snow layers on top of the sea ice efficiently prevent solar radiation from penetrating the snow–sea ice system. For example, a 5 cm thick snow layer reduces under-ice irradiance in the PAR region with a factor of about 10. Measurements of under-ice UV irradiance show that both UV-A and UV-B irradiance is reduced with a factor of more than 10 at depths of 7.5 m below the ice compared to at the ice-sea water interface.

Share - Bookmark

Cite this article

Collected from