LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bowler, Neill E. (2006)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
An experiment has been performed, using a simple chaotic model, to compare different ensemble perturbation strategies. The model used is a 300 variable Lorenz 95 model which displays many of the characteristics of atmospheric numerical weather prediction models. Twenty member ensembles were generated using five perturbation strategies, error breeding, singular vectors, random perturbations (RPs), the Ensemble Kalman Filter (EnKF) and the Ensemble Transform Kalman Filter (ETKF). Based on normal verification methods, such as rank histograms and spread of the perturbations, the RPs method performs as well as any other method—this illustrates the limitations of using a simple model. Consideration of the quality of the background error information provided by the ensemble gives a better assessment of the ensemble skill. This measure indicates that the EnKF performs best, with the ETKF combined with RPs being the next most skillful. It was found that neither the ETKF, error breeding nor singular vectors provided useful background information on their own. Central to the success of the EnKF is the localization of the background error covariance which removes spurious long-range correlations within the ensemble. Computationally efficient versions of the EnKF (such as the ETKF) cannot accommodate covariance localization and their performance is seen to suffer. Applying the ETKF to a series of local domains has been tested, which allows covariance localization whilst remaining computational efficient, and this has been found to be nearly as effective as the EnKF with covariance localization.

Share - Bookmark

Cite this article

Collected from