Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Lindroth, Anders; Lund, Magnus; Nilsson, Mats; Aurela, Mika; Christensen, Torben Röjle; Laurila, Tuomas; Rinne, Janne; Riutta, Terhi; Sagerfors, Jörgen; Ström, Lena; Tuovinen, Juha-Pekka; Vesala, Timo (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Net CO2 exchange measured under well-mixed atmospheric conditions in four different mires in Sweden and Finland were used to analyse which factors were controlling photosynthesis and respiration. The parameters of a light response function showed strong seasonal variations with similar behaviour for all mires. The half-monthly nighttime respiration rates in the central part of the growing season were about two times higher in the southernmost, warmest site, Fäje, as compared to the northernmost, coldest site, Kaamanen. However, Kaamanen had high photosynthesis rates, and this in combination with the long daylight periods in the middle of the summer caused Kaamanen to have the largest net ecosystem exchange (NEE) during the summer period. Fäje that showed the highest productivity had also the highest respiration and therefore, the lowest NEE during summer. Correlation between half-monthly components and different environmental variables showed the highest correlation between the components themselves. Thereafter came temperature except for Fäje where water table depth (WTD) explained most of the variance both for detrended and temperature-normalized components. All sites showed dependencies between WTD and the respective components during drying up periods. Temperature sensitivity was higher for productivity than for respiration indicating that CO2 uptake would increase during global warming.DOI: 10.1111/j.1600-0889.2007.00310.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alm, J., Talanov, A., Saarnio, S., Silvola, J., Ikkonen, E. and co-authors. 1997. Reconstruction of the carbon balance for microsites in a boreal oligotrophic pine fen, Finland. Oecologia 110, 423-431.
    • Arneth, A., Kurbatova, J., Kolle, O., Shibistova, O. B., Lloyd, J., and co-authors. 2002. Comparative ecosystem-atmosphere exchange of energy and mass in a European Russian and central Siberian bog II. Interseasonal and interannual variability of CO2 fluxes. Tellus 54B, 514-530.
    • Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., and coauthors. 2000. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 30, 113- 175.
    • Aurela, M., Tuovinen, J.-P. and Laurila, T. 1998. Carbon dioxide exchange in a subarctic peatland ecosystem in northern Europe measured by the eddy covariance technique. J. Geophys. Res. 103, 11289-11301.
    • Aurela, M., Laurila, T. and Tuovinen, J.-P. 2001. Seasonal CO2 balances of a subarctic mire. J. Geophys. Res. 106, 1623-1637
    • Aurela, M., Laurila, T. and Tuovinen, J.-P. 2004. The timing of snow melt controls the annual CO2 balance in a subarctic fen. Geophys. Res. Lett. 31, L16119, doi:10.1029/2004GL020315.
    • Aurela, M. 2005. Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique. Finnish Meteorological Institute Contributions No. 51, Finnish Meteorological Institute, Helsinki. Dissertation.
    • Aurela, M., Riutta, T., Laurila, T., Tuovinen, J.-P., Vesala, T., and coauthors. 2007. CO2 balance of a sedge fen in southern Finland-the impact of drought period. Tellus 59B, in press.
    • Belyea, L., and Clymo, R. S. 2001. Feedback control of the rate of peat formation. Proc. Roy. Soc. Lond.B 268, 1315-1321.
    • Belyea, L. R. and Baird, A. J. 2006. Beyond “The limits to peat bog growth”: cross-scale feedback in peatland development. Ecol. Monogr. 76, 299-322.
    • Billett, M. F., Palmer, S. M., Hope, D., Deacon, C., Storeton-West, R., and co-authors. 2004. Linking land-atmosphere-stream carbon fluxes in a lowland peatland system. Global Biogeochem. Cycles 18, GB1024.
    • Bubier, J. L., Crill, P. M., Moore, T. R., Savage, K., and Varner, R. K. 1998. Seasonal patterns and controls on net ecosystem CO2 exchange in a boreal peatland complex. Global Biogeochem. Cycles 12, 703- 714.
    • Bubier, J. L., Frolking, S., Crill, P. M. and Linder, E. 1999. Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J. Geophys.Res. - Atmos. 104, 27683-27692.
    • Bubier, J., Crill, P., Mosedale, A., Frolking, S. and Linder, E. 2003. Peatland responses to varying interannual moisture conditions as measured by automatic CO2 chambers. Global Biochem. Cycles 17, 1066-1081.
    • Clair, T. A., Arp, P., Moore, T. R., Dalva, M. and Meng, F. R. 2002. Gaseous carbon dioxide and methane, as well as dissolved organic carbon losses from a small temperate wetland under a changing climate. Environ. Pollut. 116, S143-S148.
    • Clymo, R. S. 1984. The limits to peat bog growth. Philos. Trans. R. Soc. Lond. B 303, 605-654.
    • Elder, J. F., Rybicki, N. B., Carter, V. and Weintraub, V. 2000. Sources and yields of dissolved carbon in northern Wisconsin stream catchments with differing amounts of peatland. Wetlands 20, 113- 125.
    • Eriksson, B. 1992. Klimat. In: Jordbruket. Sveriges Nationalatlas (eds˚A. Clason and B. Granstro¨m). Bokfo¨rlaget Bra Bo¨cker, Ho¨gana¨s, 14-21 (in Swedish).
    • Falge, E., Baldocchi, D. D., Olson, R., Anthoni, P., Aubinet, M., and co-authors. 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric. For. Meteorol. 107, 43-69.
    • Frolking, S. E., Bubier, J. L., Moore, T. R., Ball, T., Bellisario, L. M., and co-authors. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands. Global Biogeochem. Cycles 12, 115-126.
    • Granberg, G., Sundh, I., Svensson, B. H. and Nilsson, M. 2001. Effects of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire. Ecology 82, 1982-1998.
    • Hilbert, D. W., Roulet, N. and Moore, T. 2000. Modelling and analysis of peatlands as dynamical systems. J. Ecol. 88, 230-242.
    • Ivanov, K. E. 1981. Water Movement in Mirelands, Academic Press, London, 276 pp.
    • Johansson, T., Malmer, N., Crill, P. M., Friborg, T., ˚Akerman, J. H., and co-authors. 2006. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing. Global Change Biol. 12, 2352-2369.
    • Kortelainen, P., Saukkonen, S. and Mattsson, T. 1997. Leaching of nitrogen from forested catchments in Finland. Global Biogeochem. Cycles 11, 627-638.
    • Lafleur, P. M., Roulet, N. T., Bubier, J. L., Frolking, S. and Moore, T. R. 2003. Interannual variability in the peatland-atmosphere carbon dioxide exchange at an ombrotrophic bog. Global Biogeochem. Cycles 17, 1036, doi:10.1029/2002GB001983.
    • Lafleur, P. M., Moore, T. R., Roulet, N. T. and Frolking, S. 2005. Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems 8, 619-629.
    • Lindroth, A., Lagergren, F., Aurela, M., Bjarnadottir, B., Christensen, T. R., and co-authors. 2007. Leaf area index is the principal scaling parameter for both gross photosynthesis and ecosystem respiration of Northern deciduous and coniferous forests. Tellus 59B, in press.
    • Lloyd, J. and Taylor, J. A. 1994. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315-323.
    • Lund, M., Lindroth, A., Christensen, T. R. and Stro¨m, L. 2007. Annual CO2 balance of a temperate bog. Tellus 59B, in press.
    • Moore, T. R., Bubier, J. L., Frolking, S. E., Lafleur, P. M. and Roulet, N. T. 2002. Plant biomass and production and CO2 exchange in an ombrotrophic bog. J. Ecol. 90, 25-36.
    • Nilsson, M., Mikkela, C., Sundh, I., Granberg, G., Svensson, B. H., and co-authors. 2001. Methane emission from Swedish mires: National and regional budgets and dependence on mire vegetation. J. Geophys. Res.-Atmos. 106, 20847-20860.
    • Nordstroem, C., Soegaard, H., Christensen, T. R., Friborg, T., and Hansen, B. U. 2001. Seasonal carbon dioxide balance and respiration of a high-arctic fen ecosystem in NE-Greenland. Theor. Appl. Climatol. 70, 149-166.
    • Oechel, W. C., Voulitis, G. L., Hastings, S. J., Ault Jr., R. P. and Bryant, P. 1998. The effects of water table manipulation and elevated temperature on the net CO2 flux of wet sedge tundra ecosystems. Global Change Biol. 4, 77-90.
    • Riutta, T., Laine, J., Aurela, M., Rinne, J., Vesala, T., and co-authors. 2007. Spatial variation in plant community functions regulates carbon gas dynamics even in a seemingly homogenous boreal fen ecosystem. Tellus 59B, in press.
    • Ruimy, M. G., Jarvis, P. G., Baldocchi, D. G. and Saugier, B. 1995. CO2 fluxes over plant canopies and solar radiation: a literature review. Adv. Ecol. Res. 26, 1-68.
    • Sagerfors, J., Lindroth, A., Grelle, A., Klemedtsson, L., Weslien, P., and co-authors. 2007. Annual CO2 exchange between a nutrient poor, minerotrophic, boreal mire and the atmosphere. J. Geophys. Res. - Biogeosci., in press.
    • Schulze, E.-D. 2006. Biological control of the terrestrial carbon sink. Biogeosciences 3, 147-166.
    • Silvola, J., Alm, J., Ahlholm, U., Nyka¨nen, H. and Martikainen, P. J. 1996. CO2 fluxes from peat in boreal mires under varying temperature and moisture conditions. J. Ecol. 84, 219-228.
    • Sottocornola, M. and Kiely, G. 2005. An Atlantic blanket bog is a modest CO2 sink. Geophys. Res. Lett. 32, L23804, doi:10.1029/2005GL024731.
    • Tolonen, K. and Turunen, J. 1996. Accumulation rates of carbon in mires in Finland and implications for climate change. Holocene 6, 171-178.
    • Turunen, J., Tomppo, E., Tolonen, K. and Reinikainen, A. 2002. Estimating carbon accumulation rates of undrained mires in Finland - application to boreal and subarctic regions. Holocene 12, 69-80.
    • Waddington, J. M. and Roulet, N. T. 2000. Carbon balance of a boreal patterned peatland. Global Change Biol. 6, 87-97.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from