LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Prashant Rajput; Anil Mandaria; Lokesh Kachawa; Dharmendra Kumar Singh; Amit Kumar Singh; Tarun Gupta (2016)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: local sources, Meteorology. Climatology, QC851-999, Kanpur, PM1, local sources, long-range transport, PMF, Kanpur, Indo-Gangetic Plain, PM1, long-range transport, PMF, Indo-Gangetic Plain
This study assesses temporal variability and source contributions of PM1 (particles with aerodynamic diameter ≤ 1.0 µm) samples (n=51; November 2009–February 2010) from an urban location at Kanpur (26.30°N; 80.13°E; 142 m above mean sea-level) in the Indo-Gangetic Plain (IGP). A study period from November to February is preferred owing to massive loading of particulate matter in entire IGP. PM1 varies from 18 to 348 (Avg±SD: 113±72) µg m−3 in this study. A total of 11 trace metals, five major elements and four water-soluble inorganic species (WSIS) have been measured. Mass fraction of total metals (∑metals=trace+major) centres at 18±14 %, of which nearly 15 % is contributed by major elements. Furthermore, ∑WSIS contributes about 26 % to PM1 mass concentration. Abundance pattern among assessed WSIS in this study follows the order: ≈ > > Cl−. The K-to-PM1 mass fraction (Avg: 2 %) in conjunction with air-mass back trajectories (AMBT) indicates that the prevailing north-westerly winds transport biomass burning derived pollutants from upwind IGP. A recent version of positive matrix factorisation (PMF 5.0) has been utilised to quantify the contribution of fine-mode aerosols from various sources. The contribution from each source is highly variable and shows a strong dependence on AMBT. Events with predominant contribution from biomass burning emission (>70 %) indicate origin of air-masses from source region upwind in IGP. One of the most interesting features of our study relates to the observation that secondary aerosols (contributing as high as ~60 % to PM1 loading) are predominantly derived from stationary combustion sources (/ ratio: 0.30±0.23). Thus, our study highlights a high concentration of PM1 loading and atmospheric fog prevalent during wintertime can have a severe impact on atmospheric chemistry in the air-shed of IGP.Keywords: PM1, local sources, long-range transport, PMF, Kanpur, Indo-Gangetic Plain(Published: 26 July 2016)Citation: Tellus B 2016, 68, 30659, http://dx.doi.org/10.3402/tellusb.v68.30659
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Chakraborty, A. and Gupta, T. 2010. Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region. Aerosol Air Qual. Res. 10, 433 445.
    • Draxler, R. R. and Rolph, G. D. 2003. HYSPLIT (Hybrid SingleParticle Lagrangian Integrated Trajectory) Model Access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/ hysplit4.html). NOAA Air Resources Laboratory, Silver Spring, MD.
    • Gupta, T. and Mandaria, A. 2013. Sources of submicron aerosol during fog dominated wintertime at Kanpur. Environ. Sci. Pollut. Res. 20, 5615 5629. DOI: http://dx.doi.org/10.1007/s11356- 11013-11580-11356
    • He, L.-Y., Huang, X.-F., Xue, L., Hu, M., Lin, Y. and co-authors. 2011. Submicron Aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry. Atmos. Chem. Phys. 116, D12304. DOI: http://dx.doi.org/12310.11029/12010 JD014566
    • Huang, X.-F., He, L.-Y., Hu, M., Canagaratna, M. R., Kroll, J. H. and co-authors. 2011. Characterization of submicron aerosols at a rural site in Pearl River Delta of China using an Aerodyne High-Resolution Aerosol Mass Spectrometer. Atmos. Chem. Phys. 11, 1865 1877.
    • Lanz, V. A., Pre´ voˆ t, A. S. H., Alfarra, M. R., Weimer, S., Mohr, C. and co-authors. 2010. Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview. Atmos. Chem. Phys. 10, 10453 10471.
    • Li, Y. J., Lee, B. P., Su, L., Fung, J. C. H. and Chan, C. K. 2015. Seasonal characteristics of fine particulate matter (PM) based on high-resolution time-of-flight aerosol mass spectrometric (HR-ToF-AMS) measurements at the HKUST Supersite in Hong Kong. Atmos. Chem. Phys. 15, 37 53.
    • Mehta, B., Venkataraman, C., Bhushan, M. and Tripathi, S. N. 2009. Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos. Environ. 43, 1288 1295.
    • Menon, S., Hansen, J., Nazarenko, L. and Luo, Y. 2002. Climate effects of black Carbon Aerosols in China and India. Science 297, 2250 2253.
    • Paatero, P., Eberly, S., Brown, S. G. and Norris, G. A. 2014. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 7, 781 797.
    • Pathak, R. K., Wu, W. S. and Wang, T. 2009. Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmos. Chem. Phys. 9, 1711 1722.
    • Rajput, P., Mandaria, A., Kachawa, L., Singh, D. K., Singh, A. K. and co-authors. 2015. Wintertime source-apportionment of PM1 from Kanpur in the Indo-Gangetic Plain. Clim. Change. 1, 503 507.
    • Rajput, P., Sarin, M. M. and Kundu, S. S. 2013. Atmospheric particulate matter (PM2.5), EC, OC, WSOC and PAHs from NE-Himalaya: abundances and chemical characteristics. Atmos. Pollut. Res. 4, 214 221.
    • Rajput, P., Sarin, M. M. and Rengarajan, R. 2011. High-precision GC-MS analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) and isomer ratios from biomass burning emissions. J. Environ. Protect. 2, 445 453.
    • Rajput, P., Sarin, M. M., Sharma, D. and Singh, D. 2014a. Atmospheric polycyclic aromatic hydrocarbons and isomer ratios as tracers of biomass burning emissions in Northern India. Environ. Sci. Pollut. Res. 21, 5724 5729.
    • Rajput, P., Sarin, M. M., Sharma, D. and Singh, D. 2014b. Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the Indo-Gangetic Plain. Tellus B. 66, 21026. DOI: http://dx.doi. org/10.3402/tellusb.v66.21026
    • Rajput, P., Sarin, M. M., Sharma, D. and Singh, D. 2014c. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon. Environ. Sci. Process. Impacts. 16, 2371 2379.
    • Ramanathan, V., Ramana, M. V., Roberts, G., Kim, D., Corrigan, C. and co-authors. 2007. Warming trends in Asia amplified by brown cloud solar absorption. Nature. 448, 575 578.
    • Rastogi, N., Singh, A., Singh, D. and Sarin, M. M. 2014. Chemical characteristics of PM2.5 at a source region of biomass burning emissions: Evidence for secondary aerosol formation. Environ. Pollut 184, 563 569.
    • Rengarajan, R., Sarin, M. M. and Sudheer, A. K. 2007. Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J. Geophys. Res. Atmos 112, D21307.
    • Ripoll, A., Minguillo´ n, M. C., Pey, J., Jimenez, J. L., Day, D. A. and co-authors. 2015. Long-term real-time chemical characterization of submicron aerosols at Montsec (southern Pyrenees, 1570 m a.s.l.). Atmos. Chem. Phys. 15, 2935 2951.
    • Singh, A., Rajput, P., Sharma, D., Sarin, M. M. and Singh, D. 2014. Black Carbon and elemental Carbon from Postharvest Agricultural-Waste Burning Emissions in the Indo-Gangetic Plain. Adv. Meteorol. 2014, 10.
    • Singh, D. K., Sharma, S., Habib, G. and Gupta, T. 2015. Speciation of atmospheric polycyclic aromatic hydrocarbons (PAHs) present during fog time collected submicron particles. Environ. Sci. Pollut. Res. 22, 12458 12468. DOI: http://dx.doi. org/10.1007/s11356-11015-14413-y
    • Srinivas, B., Kumar, A., Sarin, M. M. and Sudheer, A. K. 2011. Impact of continental outflow on chemistry of atmospheric aerosols over tropical Bay of Bengal. Atmos. Chem. Phys. Discuss. 11, 20667 20711.
    • Surratt, J. D., G o´mez-Gonz a´lez, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M. and co-authors. 2008. Organosulfate formation in biogenic secondary organic aerosol. J. Phys. Chem. A. 112, 8345 8378.
    • Tripathi, S. N., Dey, S., Tare, V. and Satheesh, S. K. 2005. Aerosol black carbon radiative forcing at an industrial city in northern India. Geophys. Res. Lett. 32, L08802. DOI: http://dx.doi.org/ 10.1029/2005GL022515
    • Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B. and co-authors. 2014. Characterization of submicron aerosols during a month of serious pollution in Beijing, 2013. Atmos. Chem. Phys. 14, 2887 2903.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article