LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bengtsson, Lennart (2013)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, general circulation models, natural climate variability, climate change
The climate of the Earth, like planetary climates in general, is broadly controlled by solar irradiation, planetary albedo and emissivity as well as its rotation rate and distribution of land (with its orography) and oceans. However, the majority of climate fluctuations that affect mankind are internal modes of the general circulation of the atmosphere and the oceans. Some of these modes, such as El Nino-Southern Oscillation (ENSO), are quasi-regular and have some longer-term predictive skill; others like the Arctic and Antarctic Oscillation are chaotic and generally unpredictable beyond a few weeks. Studies using general circulation models indicate that internal processes dominate the regional climate and that some like ENSO events have even distinct global signatures. This is one of the reasons why it is so difficult to separate internal climate processes from external ones caused, for example, by changes in greenhouse gases and solar irradiation. However, the accumulation of the warmest seasons during the latest two decades is lending strong support to the forcing of the greenhouse gases. As models are getting more comprehensive, they show a gradually broader range of internal processes including those on longer time scales, challenging the interpretation of the causes of past and present climate events further.Keywords: climate change, general circulation models, natural climate variability(Published: 12 March 2013)Citation: Tellus B 2013, 65, 20189, http://dx.doi.org/10.3402/tellusb.v65i0.20189This publication is part of a Thematic Cluster with papers presented at a conference held in Stockholm 21 - 23 May 2012, to honor the late Professor Bert Bolin for his outstanding contributions to climate science and his efforts to create a dialogue between policy makers and the scientific community. All papers within the cluster will be published online as soon as they have been accepted for publication. When all papers belonging to the cluster have been published, they will be summarized with a foreword describing the background and scope of the conference.Read the other papers from this thematic cluster here
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allan, R., Lindesay, J. and Parker, D. 1996. El Nin˜o: Southern Oscillation and Climate Variability. CSIRO Publishing, Collingwood, Vic., Australia, 416 pp.
    • Baldwin, M. P., Gray, L. G., Dunkerton, T. J., Hamilton, K., Hayes, P. H. and co-authors. 2001. The quasi-biennial oscillation. Rev. Geophys. 39, 179 229.
    • Bengtsson, L. 2001. Uncertainties of global climate prediction. In: Global Biogeochemical Cycles in the Climate System (eds. Schulze, E-D., Heimann, M., Harrison, S., Holland, E., Lloyd, J. and co-editors). Academic Press San Diego, 350 pp.
    • Bengtsson, L., Hodges, K. I., Roeckner, E. and Brokopf, R. 2006. On the natural variability of the pre-industrial European climate. Clim. Dyn. 26, 743 760.
    • Boer, G. J. and Yu, B. 2003. Climate sensitivity and climate state. Clim. Dyn. 21, 167 176. DOI: 10.1007/s00382-003-0323-7.
    • Charney, J., Fjo¨ rtoft, R. and Von Neumann, J. 1950. Numerical integration of the barotropic vorticity equation. Tellus. 2, 237 254.
    • Claussen, M. 1998. On multiple solutions of the atmosphericvegetation system in present-day climate. Glob. Change Biol. 4, 549 559.
    • Cobb, K. M., Charles, C. D., Cheng, H. and Edwards, R. L. 2003. El Nin˜ o/Southern oscillation and tropical Pacific climate during the last millennium. Nature. 424, 271 276.
    • Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J. and co-authors. 2011. Review article the twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 137, 1 28.
    • Cubasch, U., Voss, R., Hegerl, G. C., Waszkewitz, J. and Crowley, T. J. 1997. Simulation of the influence of solar radiation variations on the global climate with an ocean-atmosphere general circulation model. Clim. Dyn. 13, 757 767.
    • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisfoord, P., Poli, P. and co-authors. 2011. The ERA-Interim reanalysis: configuration and performance of the data-assimilation system. Q. J. R. Meteorol. Soc. 137, 553 597.
    • Eady, J. A. 1976. The Maunder minimum. Science. 192, 1189 1202.
    • Fro¨ hlich, C. 2012. Total solar irradiance observations. Surv. Geophys. 33, 453 473. DOI: 10.1007/s10712-011-9168-5.
    • Fultz, D., Long, R. R., Owens, G. V., Bohan, W., Kaylor, R. and co-authors. 1959. Studies of thermal convection in a rotating cylinder with some implications for large-scale atmospheric motions. Meteorol. Monogr. 4, 104.
    • Hide, R. 1953. Some experiments on thermal convection in a rotating liquid. Q. J. R. Meteorol. Soc. 79, 161.
    • Hunt, B. G. 2007. Climate outliers. Int. J. Clim. 27, 139 156.
    • Hunt, B. G. and Elliott, T. J. 2006. Climate trends. Clim. Dyn. 26, 567 585.
    • Hurrell, J. W., Kushnir, Y., Ottersen, G. and Visbeck, M. (eds.) 2003. The north Atlantic oscillation: climatic significance and environmental impact. Geophys. Monogr. Ser. 134, 279. DOI: 10.1029/GM134.
    • Jungclaus, J. H., Lorenz, S. J., Timmreck, C., Reick, C. H., Brovkin, V. and co-authors. 2010. Climate and carbon-cycle variability over the last millennium. Clim. Past. 6, 723 737.
    • Kiehl, J. 2007. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34, L22710.
    • Kloster, S., Dentener, F., Feichter, J., Raes, F., Lohmann, U. and co-authors. 2010. A GCM study of future climate response to aerosol pollution reductions. Clim. Dyn. 34, 1177 1194. DOI: 10.1007/s00382-009-0573-0.
    • Kollek, M., Grieser, J., Beck, C., Rudolf, B. and Rubel, F. 2006. World Map of the Ko¨ ppen-Geiger climate classification updated. Meteorol. Zeitschr. 15, 259 263.
    • Ko¨ ppen, W. 1884. Die W a¨rmezonen der Erde, nach der Dauer der heissen, gema¨ ssigten und kalten Zeit und nach der Wirkung der Wa¨ rme auf die organische Welt betrachtet. Meteor. Zeitschr. 1, 215 226 (in German).
    • Ko¨ ppen, W. 1900. Versuch einer Klassifikation der Klimate, vorzugweise nach ihren Beziehungen zur Pflantzenwelt. Geogr. Zeitschr. 6, 593 611, 657 679 (in German).
    • Ko¨ ppen, W. 1936. Das geographische System der Klimate. In: Handbuch der Klimatologie (eds. Ko¨ ppen, W. and Geiger, R.) Band 5, Teil C. Gebru¨ der Borntr a¨ger, Berlin (in German).
    • Lean, J., Beer, J. and Bradley, R. 1995. Reconstruction of solar irradiance since 1610: implications for climate change. Geophys. Res. Lett. 22, 3195 3198.
    • Lenton, T. L., Held, H., Kriegler, E., Hall, J. W., Lucht, W. and co-authors. 2008. Tipping elements in the earth's climate system. PNAS. 105, 1786 1793.
    • Lindzen, R. S. and Holton, J. R. 1968. A theory of the quasibiennial oscillation. J. Atmos. Sci. 25, 1095 1107.
    • Lockwood, M. 2012. Solar influence on global and regional climates. Surv. Geophys. 33, 503 534. DOI: 10.1007/s10712- 012-9181-3.
    • Lorenz, E. N. 1963a. Deterministic non-periodic flow. J. Atmos. Sci. 20, 130 141.
    • Lorenz, E. N. 1963b. The mechanisms of vacillation. J. Atmos. Sci. 20, 448 464.
    • Lorenz, E. N. 1982. Atmospheric predictability experiments with a large numerical 22 model. Tellus. 34, 505 513.
    • Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. and Wanner, H. 2004. European seasonal and annual temperature variability, trends and extremes since 1500. Science. 303, 1499 1503.
    • Pfeffer, R. L. 1960. Dynamics of Climate: Proceedings. Symposium Publications Division, Pergamon Press, Oxford, New York.
    • Philander, S. G. H., 1990. El Nin˜o, La Nin˜a and the Southern Oscillation. Academic Press, San Diego, CA.
    • Roeckner, E., Ba¨ uml, G., Bonaventura, L., Brokopf, R., Esch, M. and co-authors. 2003. The atmospheric general circulation model ECHAM 5. Part I: model description. MPI-Report 349. 127.
    • Roeckner, E., Brokopf, R., Esch, M., Giorgetta, M., Hagemann, S. and co-authors. 2006. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model. J. Clim. 19, 3771 3791.
    • Sanderson, M. 1999. The classification of climates from Pythagoras to Koeppen. Bull. Am. Met. Soc. 80, 669 673.
    • Xoplaki, E., Luterbacher, J., Paeth, H., Dietrich, D., Steiner, N. and co-authors. 2005. European spring and autumn temperature variability and change of extremes over the last half millennium. Geophys. Res. Lett. 32, L15713. DOI: 10.1029/2005GL023424.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article