Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Szarko, Jodi M.; Guo, Jianchang; Rolczynski, Brian S.; Chen, Lin X. (2011)
Publisher: Co-Action Publishing
Journal: Nano Reviews
Languages: English
Types: Article
Subjects: Organic photovoltaic; organic solar cells; grazing incident x-ray scatterning; pi-conjugated polymers
Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spincoated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems.Keywords: organic photovoltaics; perylene; thiophene; charge transport; transient absorption; grazing incidence x-ray scattering(Published: 12 August 2011)Citation: Nano Reviews 2011, 2: 7249 - DOI: 10.3402/nano.v2i0.7249
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Tang CW. 2-Layer organic photovoltaic cell. Appl Phys Lett 1986; 48: 183 5.
    • 2. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunction. Science 1995; 270: 1789 91.
    • 3. Peumans P, Uchida S, Forrest SR. Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 2003; 425: 158 62.
    • 4. Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene. Science 1992; 258: 1474 6.
    • 5. Hains AW, Liang Z, Woodhouse MA, Gregg BA. Molecular semiconductors in organic photovoltaic cells. Chem Rev 2010; 110: 6689 735.
    • 6. Rand BP, Genoe J, Heremans P, Poortmans J. Solar cells utilizing small molecular weight organic semiconductors. Prog Photovolt: Res Appl 2007; 15: 659 76.
    • 7. Baba H, Chitoku K, Nitta K. Photoelectric phenomena with copper phthalocyanine. Nature 1956; 177: 672.
    • 8. Kronik L, Shapira Y. Surface photovoltage phenomena: theory, experiment, and applications. Surf Sci Rep 1999; 37: 1 206.
    • 9. Hennebicq E, Pourtois G, Scholes GD, Herz LM, Russell DM, Silva C, et al. Exciton migration in rigid-rod conjugated polymers: an improved Fo¨ rster model. J Am Chem Soc 2005; 127: 4744 62.
    • 10. Schwenn PE, Gui K, Nardes AM, Krueger KB, Lee KH, Mutkins K, et al. A small molecule non-fullerene electron acceptor for organic solar cells. Adv Energy Mater 2010; 1: 73 81.
    • 11. Shirota Y. Organic materials for electronic and optoelectronic devices. J Mater Chem 2000; 10: 1 25.
    • 12. Wei G, Wang S, Renshaw K, Thompson ME, Forrest SR. Solution-processed squaraine bulk heterojunction photovoltaic cells. Acs Nano 2010; 4: 1927 34.
    • 13. 'Heliatek and IAPP production-relevant efficiency record for organic photovoltaic cells', http://www.heliatek.com/news-19, October 11, 2010
    • 14. 'Konarka's Power Plastic Achieves World Record 8.3% Efficiency Certification from National Energy Renewable Laboratory (NREL) http://www.konarka.com/index.php/site/ pressreleasedetail/konarkas_power_plastic_achieves_world_record_ 83_efficiency_certification_fr, November 29, 2010
    • 15. Peumans P, Bulovic V, Forrest SR. Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Appl Phys Lett 2000; 76: 2650 2.
    • 16. Hiramoto M, Fujiwara H, Yokoyama M. 3-Layered organic solar-cell with a photoactive interlayer of codeposited pigments. App Phys Lett 1991; 58: 1062 4.
    • 17. Vogel JO, Salzmann I, Duhm S, Oehzelt M, Rabe JP, Koch N. Phase-separation and mixing in thin films of co-deposited rodlike conjugated molecules. J Mater Chem 2010; 20: 4055 66.
    • 18. Pandey R, Holmes RJ. Graded donor-acceptor heterojunctions for efficient organic photovoltaic cells. Adv Mater 2010; 22: 5301 5.
    • 19. Liang FS, Shi F, Fu YY, Wang LF, Zhang XT, Xie ZY, et al. Donor-acceptor conjugates-functionalized zinc phthalocyanine: towards broad absorption and application in organic solar cells. Sol Energy Mater Sol Cells 2010; 94: 1803 8.
    • 20. Ofuji M, Inaba K, Omote K, Hoshi H, Takanishi Y, Ishikawa K, et al. Grazing incidence in-plane x-ray diffraction study on oriented copper phthalocyanine thin films. Jpn J Appl Phys 2002; 41: 5467 71.
    • 21. Law KY. Organic photoconductive materials recent trends and developments. Chem Rev 1993; 93: 449 86.
    • 22. Krebs FC, Fyenbo J, Jorgensen M. Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing. J Mater Chem 2010; 20: 8994 9001.
    • 23. Petritsch K, Dittmer JJ, Marseglia EA, Friend RH, Lux A, Rozenberg GG, et al. Dye-based donor/acceptor solar cells. Sol Energy Mater Sol Cells 2000; 61: 63 72.
    • 24. Mutolo KL, Mayo EI, Rand BP, Forrest SR, Thompson ME. Enhanced open-circuit voltage in subphthalocyanine/C-60 organic photovoltaic cells. J Am Chem Soc 2006; 128: 8108 9.
    • 25. Ma B, Woo CH, Miyamoto Y, Frechet JMJ. Solution processing of a small molecule, subnaphthalocyanine, for efficient organic photovoltaic cells. Chem Mater 2009; 21: 1413 7.
    • 26. Silvestri F, Irwin MD, Beverina L, Facchetti A, Pagani GA, Marks TJ. Efficient squaraine-based solution processable bulkheterojunction solar cells. J Am Chem Soc 2008; 130: 17640 1.
    • 27. Mayerh o¨ffer U, Deing K, Gruß K, Braunschweig H, Meerholz K, Wu¨ rthner F. Outstanding short-circuit currents in BHJ solar cells based on NIR-absorbing acceptor-substituted squaraines. Angew Chem Int Ed 2009; 48: 8776 9.
    • 28. Wei G, Lunt RR, Sun K, Wang S, Thompson ME, Forrest SR. Efficient, ordered bulk heterojunction nanocrystalline solar cells by annealing of ultrathin squaraine thin films. Nano Letters 2010; 10: 3555 9.
    • 29. Wei G, Wang S, Sun K, Thompson ME, Forrest SR. Solventannealed crystalline squaraine: PC70BM (1:6) solar cells. Adv Energy Mater 2011; 1: 184 7.
    • 30. Forrest SR. Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 1997; 97: 1793 896.
    • 31. Peumans P, Yakimov A, Forrest SR. Small molecular weight organic thin-film photodetectors and solar cells. J Appl Phys 2003; 93: 3693 723.
    • 32. Chen L, Xiao S, Yu L. Dynamics of photoinduced electron transfer in a molecular donor-acceptor quartet. J Phys Chem B 2006; 110: 11730 8.
    • 33. Guo JC, Liang YY, Xiao SQ, Szarko JM, Sprung M, Mukhopadhyay MK, et al. Structure and dynamics correlations of photoinduced charge separation in rigid conjugated linear donor-acceptor dyads towards photovoltaic applications. New J Chem 2009; 33: 1497 507.
    • 34. El-Khouly ME, Ito O, Smith PM, D'Souza F. Intermolecular and supramolecular photoinduced electron transfer processes of fullerene-porphyrin/phthalocyanine systems. J Photoch Photobio C 2004; 5: 79 104.
    • 35. Sommer M, Huettner S, Thelakkat M. Donor-acceptor block copolymers for photovoltaic applications. J Mater Chem 2010; 20: 10788 97.
    • 36. Wasielewski MR. Photoinduced electron-transfer in supramolecular systems for artificial photosynthesis. Chem Rev 1992; 92: 435 61.
    • 37. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C-60 buckminsterfullerene. Nature 1985; 318: 162 3.
    • 38. Sariciftci NS, Braun D, Zhang C, Srdanov VI, Heeger AJ, Stucky G, et al. Semiconducting polymer-buckminsterfullerene heterojunctions diodes, photodiodes, and photovoltaic cells. Appl Phys Lett 1993; 62: 585 7.
    • 39. Peumans P, Forrest SR. Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells. Appl Phys Lett 2001; 79: 126 8.
    • 40. Sension RJ, Szarka AZ, Smith GR, Hochstrasser RM. Ultrafast photoinduced electron-transfer to C60. Chem Phys Lett 1991; 185: 179 83.
    • 41. Hummelen JC, Knight BW, Lepeq F, Wudl F, Yao J, Wilkins CL. Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 1995; 60: 532 8.
    • 42. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, et al. Efficient methano[70]fullerene/mdmo-ppv bulk heterojunction photovoltaic cells. Angew Chem Int Ed 2003; 42: 3371 5.
    • 43. Allemand PM, Koch A, Wudl F, Rubin Y, Diederich F, Alvarez MM, et al. 2 different fullerenes have the same cyclic voltammetry. J Am Chem Soc 1991; 113: 1050 1.
    • 44. Cheng Y, Hsieh C, Heldots Y. Combination of indene-c60 bisadduct and cross-linked fullerene interlayer leading to highly efficient inverted polymer solar cells. J Am Chem Soc 2010; 132: 17381 3.
    • 45. de Bettignies R, Nicolas Y, Blanchard P, Levillain E, Nunzi JM, Roncali J. Planarized star-shaped oligothiophenes as a new class of organic semiconductors for heterojunction solar cells. Adv Mater 2003; 15: 1939.
    • 46. Wynands D, Mannig B, Riede M, Leo K, Brier E, Reinold E et al. Organic thin film photovoltaic cells based on planar and mixed heterojunctions between fullerene and a low bandgap oligothiophene. J Appl Phys 2009; 106: 054509.
    • 47. Roncali J. Synthetic principles for bandgap control in linear pi-conjugated systems. Chem Rev 1997; 97: 173 205.
    • 48. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulkheterojunction solar cells. Adv Mater 2009; 21: 1323 38.
    • 49. Walker B, Kim C, Nguyen T-Q. Small molecule solutionprocessed bulk heterojunction solar cells. Chem Mater 2011; 23: 470 82.
    • 50. Bundgaard E, Krebs FC. Low band gap polymers for organic photovoltaics. Sol Energy Mater Sol Cells 2007; 91: 954 85.
    • 51. Walker B, Tamayo AB, Dang X-D, Zalar P, Seo JH, Garcia A, et al. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv Funct Mater 2009; 19: 3063 9.
    • 52. Walker B, Tamayo A, Duong DT, Dang X-D, Kim C, Granstrom J, et al. A systematic approach to solvent selection based on cohesive energy densities in a molecular bulk heterojunction system. Adv Energy Mater 2011; 1: 221 9.
    • 53. Cai X, Burand MW, Newman CR, Filho DADS, Pappenfus TM, Bader MM, et al. N- and p-channel transport behavior in thin film transistors based on tricyanovinyl-capped oligothiophenes. J Phys Chem B 2006; 110: 14590 7.
    • 54. Pappenfus TM, Burand MW, Janzen DE, Mann KR. Synthesis and characterization of tricyanovinyl-capped oligothiophenes as low-band-gap organic materials. Org Lett 2003; 5: 1535 8.
    • 55. Milian B, Orti E, Hernandez V, Navarrete JTL, Otsubo T. Spectroscopic and theoretical study of push-pull chromophores containing thiophene-based quinonoid structures as electron spacers. J Phys Chem B 2003; 107: 12175 83.
    • 56. Muhammad FF, Sulaiman K. Photovoltaic performance of organic solar cells based on dh6t/pcbm thin film active layers. Thin Solid Films 2011; 519: 5230 3.
    • 57. Wynands D, Levichkova M, Leo K, Uhrich C, Schwartz G, Hildebrandt D, et al. Increase in internal quantum efficiency in small molecular oligothiophene: C-60 mixed heterojunction solar cells by substrate heating. Appl Phys Lett 2010; 97: 073503.
    • 58. Yin B, Yang L, Liu Y, Chen Y, Qi Q, Zhang F, et al. Solutionprocessed bulk heterojunction organic solar cells based on an oligothiophene derivative. Appl Phys Lett 2010; 97: 023303.
    • 59. Uhrich CL, Schwartz G, Maennig B, Gnehr WM, Sonntag S, Erfurth O, et al. Efficient and long-term stable organic vacuum deposited tandem solar cells. Organic Photonics IV 2010; 7722: 77220G.
    • 60. Szarko JM, Rolczynski BS, Guo J, Liang Y, He F, Mara MW et al. Electronic processes in conjugated diblock oligomers mimicking low band-gap polymers: experimental and theoretical spectral analysis. J Phys Chem B 2010; 114: 14505 13.
    • 61. Rolczynski BS, Szarko JM, Lee B, Strzalka J, Guo JC, Liang YY, et al. Length-dependent self-assembly of oligothiophene derivatives in thin films: implications in photovoltaic material fabrications. J Mater Res 2011; 26: 296 305.
    • 62. Liang VY, Feng DQ, Guo JC, Szarko JM, Ray C, Chen LX et al. Regioregular oligomer and polymer containing thieno[3,4- b]thiophene moiety for efficient organic solar cells. Macromolecules 2009; 42: 1091 8.
    • 63. Moet DJD, Koster LJA, de Boer B, Blom PWM. Hybrid polymer solar cells from highly reactive diethylzinc: MDMOPPV versus P3HT. Chem Mater 2007; 19: 5856 61.
    • 64. Zou JH, Khondaker SI, Huo Q, Zhai L. A general strategy to disperse and functionalize carbon nanotubes using conjugated block copolymers. Adv Funct Mater 2009; 19: 479 83.
    • 65. Meier H, Stalmach U, Kolshorn H. Effective conjugation length and uv/vis spectra of oligomers. Acta Polym 1997; 48: 379 84.
    • 66. Cates NC, Gysel R, Dahl JEP, Sellinger A, McGehee MD. Effects of intercalation on the hole mobility of amorphous semiconducting polymer blends. Chem Mater 2010; 22: 3543 8.
    • 67. Yang HH, LeFevre SW, Ryu CY, Bao ZN. Solubility-driven thin film structures of regioregular poly(3-hexyl thiophene) using volatile solvents. Appl Phys Lett 2007; 90: 172116.
    • 68. Chiu MY, Jeng US, Su CH, Liang KS, Wei KH. Simultaneous use of small- and wide-angle x-ray techniques to analyze nanometerscale phase separation in polymer heterojunction solar cells. Adv Mater 2008; 20: 2573 8.
    • 69. Politis JK, Nemes JC, Curtis MD. Synthesis and characterization of regiorandom and regioregular poly(3-octylfuran). J Am Chem Soc 2001; 123: 2537 47.
    • 70. Reyes-Reyes M, Kim K, Dewald J, Lopez-Sandoval R, Avadhanula A, Curran S, et al. Meso-structure formation for enhanced organic photovoltaic cells. Org Lett 2005; 7: 5749 52.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from