Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Holt, Teddy; Pullen, Julie; Bishop, Craig H. (2009)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
A high-resolution (1.67 km) ensemble transform (ET)-based meso-scale modelling system utilizing urbanization and sea surface temperature (SST) perturbations is used to examine characteristics of sea breeze/heat island interactions and atmospheric transport and dispersion for Tokyo. The ensemble displays a positive spread–skill relationship, with the addition of urban perturbations enabling the ensemble variance to distinguish a larger range of forecast error variances. Two synoptic regimes are simulated. For a pre-frontal period (stronger synoptic flow), there is less variability among ensemble members in the strength of the urban heat island and its interaction with the sea breeze front. During the post-frontal time period, the sea breeze frontal position is very sensitive to the details of the urban representation, with horizontal frontal variation covering the width of the urban centre (∼30 km) and displaying significant impacts on the development and strength of the heat island. Moreover, the dosage values of a tracer released at offshore and urban sites have considerable variability among ensemble members in response to small-scale features such as coastally upwelled water, enhanced anthropogenic heating and variations in building heights. Realistic variations in SST (i.e. warm Tokyo Bay or local upwelling) produce subtle sea breeze variations that dramatically impact tracer distributions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Barker, E. H. 1992. Design of the navy's multivariate optimum interpolation analysis system. Wea. Forecast. 7, 220-231.
    • Bishop, C. H. and Toth Z. 1999. Ensemble transformation and adaptive observations. J. Atmos. Sci. 56, 1748-1765.
    • Bishop, C. H., Holt, T., Nachamkin, J., Chen, S., McLay, J. and Doyle, J. 2008. Regional ensemble forecasts using the Ensemble Transform technique. Mon. Wea. Rev., in press.
    • Brown, M. J. and Williams, M. 1998. An urban canopy parameterization for mesoscale meteorological models. In: Proceedings of the Second Symposium on the Urban Environment. Am. Meteor. Soc., Albuquerque, NM, 144-147.
    • Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J. and co-authors. 2007. The HYCOM (hybrid coordinate ocean model) data assimilative system. J. Mar. Syst. 65, 60-83.
    • Cummings, J. A. 2006. Operational multivariate ocean data assimilation. Quart. J. Roy. Meteor. Soc. 131, 3583-3604.
    • Dabberdt, W. F. and Miller, E. 2000. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmos. Environ. 34, 4667-4673.
    • Delle Monache, L., Deng, X., Zhou, Y. and Stull, R. 2006. Ozone ensemble forecasts, 1: a new ensemble design. J. Geophys. Res. 111, D04304, doi:10.1029/2005JD006310.
    • Hanna, S. R., Lu, Z. G., Frey, H. C., Wheeler, N., Vukovich, J. and coauthors. 2001. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain. Atmos. Environ. 35, 891-903.
    • Harshvardhan, Davies, R., Randall, D. A. and Corsetti, T. G. 1987. A fast radiation parameterization for atmospheric circulation models. J. Geophys. Res. 92, 1009-1016.
    • Hodur, R. M. 1997. The Naval Research Laboratory's Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS). Mon. Weather Rev. 125, 1414-1430.
    • Holt, T. and Pullen, J. 2007. Urban canopy modeling of the New York City metropolitan area: a comparison and validation of singlelayer and multi-layer parameterizations. Mon. Wea. Rev. 135, 1906- 1930.
    • Holt, T. R., Niyogi, D., Chen, F., Manning, K., LeMone, M. A. and co-authors. 2006. Effect of land-atmosphere interactions on the IHOP 24-25 May 2002 convection case. Mon. Wea. Rev. 134, 113-133.
    • Ichinose, T., Shimodozono, K. and Hanaki, K. 1999. Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ. 33, 3897-3909.
    • Kain, J. S. and Fritsch, J. M. 1993. Convective parameterization for mesoscale models: the Kain- Fritsch scheme. In: The Representation of Cumulus Convection in Numerical Models. Meteorol. Monogr. Volume 24. Amer. Meteor. Soc., 165-170.
    • Khairoutdinov, M. and Kogan, Y. 2000. A new cloud physics parameterization in a large eddy simulation model of marine stratocumulus. Mon. Wea. Rev. 128, 229-243.
    • Klemp, J. B. and Wilhelmson, R. B. 1978. The simulation of threedimensional convective storm dynamics. J. Atmos. Sci. 35, 1070- 1096.
    • Kusaka, H., Kimura, F., Hirakuchi, H. and Mizutori, M. 2000. The effects of land-use alteration on the sea breeze and daytime heat island in the Tokyo Metropolitan area. J. Meteorol. Soc. Japan. 78, 405-420.
    • Kusaka, H., Kondo, H., Kikegawa, Y. and Kimura, F. 2001. A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound.-Layer Meteorol. 101, 329- 358.
    • Kusaka, H., Chen, F., Tewari, M. and Hirakuchi, H. 2005. Impact of using the urban canopy model on the simulation of the heat island. In: Proceedings of the WRF/MM5 Users' Workshop, Boulder, CO, Preprints.
    • Liu, M., Westphal, D. L., Walker, A. L., Holt, T. R., Richardson, K. A. and co-authors. 2007. COAMPS real-time dust storm forecasting during operation Iraqi freedom. Wea. Forecast. 22, 192-206.
    • Louis, J.-F., Tiedtke, M. and Geleyn, J. F. 1982. A short history of the operational PBL-parameterization of ECMWF. In: Proceedings of the Workshop on Planetary Boundary Layer Parameterization. European Centre for Medium Range Weather Forecasts, Shin-field Park, Reading, Berkshire, UK, 59-79.
    • Martin, P. J. 2000. A description of the Navy Coastal Ocean Model version 1.0. Nav. Res. Lab. Rep. NRL/FR/7322-00-9962, Nav. Res. Lab., Stennis Space Cent., MS, 42 pp.
    • McLay, J. G., Bishop, C. H. and Reynolds, C. A. 2007. The ensembletransform scheme adapted for the generation of stochastic forecast perturbations. Quart. J. Roy. Meteorol. Soc. 133, 1257-1266.
    • Mellor, G. L. and Yamada, T. 1982. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 20, 851-875.
    • Menut, L. 2003. Adjoint modeling for atmospheric pollution process sensitivity at regional scale. J. Geophys. Res. 108, 8562, doi:10.1029/2002JD002549.
    • Oda, R., Kanda, M. and Moriwaki, R. 2007. Impact of sea surface temperature on sea air temperature in Tokyo Bay. In: Proceedings of the Seventh AMS Symposium on the Urban Environment, 10-13 September 2007, San Diego, CA.
    • Ohashi, Y. and Kida, H. 2002. Numerical experiments on the weak-wind region formed ahead of the sea-breeze front. J. Meteorol. Soc. Japan. 80, 519-527.
    • Ooka, R. 2007. Recent development of assessment tools for urban climate and heat-island investigation especially based on experiences in Japan. Int. J. Climatol. 27, 1919-1930.
    • Pullen, J., Holt, T., Blumberg, A. and Bornstein, R. 2007. Atmospheric response to local upwelling in the vicinity of New York/ New Jersey Harbor. J. Appl. Meteorol. Climatol. 46, 1031-1052.
    • Rutledge, S. A. and Hobbs, P. V. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones, VIII: a model for the “seeder-feeder” process in warmfrontal rainbands. J. Atmos. Sci. 40, 1185-1206.
    • Sailor, D. J. and Lu, L. 2004. A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ. 38, 2737-2748.
    • Saitoh, T. S., Shimada, T. and Hoshi, H. 1996. Modeling and simulation of the Tokyo urban heat island. Atmos. Environ. 20, 3431-3442.
    • Thompson, W., Holt, T. and Pullen, J. 2007. Investigation of a sea breeze front in an urban environment. Quart. J. Roy. Meteorol. Soc. 133, 579- 594.
    • Tran, H., Uchihama, D., Oochi, S. and Yasuoka, Y. 2006. Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Observ. Geoinform. 8, 34-48.
    • Warner, T. T., Sheu, R. S., Bowers, J. F., Ian Sykes, R., Dodd, G. C. and co-authors. 2002. Ensemble simulations with coupled atmospheric dynamic and dispersion models: illustrating uncertainties in dosage simulations. J. Appl. Meteorol. 41, 488-504.
    • Warner, S., Platt, N. and Heagy, J. F. 2004. User-oriented twodimensional measure of effectiveness for the evaluation of transport and dispersion models. J. Appl. Meteorol. 43, 53-73.
    • Yoshikado, H. 1990. Vertical structure of the sea breeze penetrating through a large urban complex. J. Appl. Meteorol. Climatol. 29, 878- 891.
    • Yoshikado, H. and Kondo, H. 1989. Inland penetration of the sea breeze over the suburban area of Tokyo. Bound.-Layer Meteorol. 48, 389- 407.
    • Zhang, F., Bei, N., Nielsen-Gammon, J. W., Li, G., Zhang, R. and co-authors. 2007. Impacts of meteorological uncertainties on ozone pollution predictability estimated through meteorological and photochemical ensemble forecasts. J. Geophys. Res. 112, D04304, doi:10.1029/2006JD007429.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from