Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wang, Faming; Scott, Robert (2005)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Three methods for approximating the high-dimensional stochastic system with a low-dimensional model are examined, and the prediction error and predictability of the reduced-order models are evaluated. It is shown that during reduction both the normal modes of deterministic dynamics and the spatial structures of stochastic forcing need to be taken into account. In addition to stability, which determines the asymptotic behavior, non-normality, which controls the error growth at short lead times, should also be preserved. An experiment with tropical Atlantic variability illustrates that the empirical orthogonal function and balanced truncation are superior to modal reduction in capturing the predictable dynamics.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Achatz, U. and Branstator, G. 1999. A two-layer model with empirical linear corrections and reduced order for studies of internal climate variability. J. Atmos. Sci. 56, 3140-3160.
    • Achatz, U. and Schmitz, G. 1997. On the closure problem in the reduction of complex atmospheric models by PIPs and EOFs: a comparison for the case of a two-layer model with zonally symmetric forcing. J. Atmos. Sci. 54, 2452-2474.
    • Antoulas, A. C. and Sorensen, D. C. 2001. Approximation of large-scale dynamical systems: An overview. Int. J. Appl. Math. Comput. Sci. 11, 1093-1121.
    • Blumenthal, M. B. 1991. Predictability of a coupled ocean-atmosphere model. J. Climate 4, 766-784.
    • Buehner, M. and Malanotte-Rizzoli, P. 2003. Reduced-rank Kalman filters applied to an idealized model of the wind-driven ocean circulation. J. Geophys. Res. 108, doi:10.1029/2001JC000873.
    • Cane, M. A., Kaplan, A., Miller, R. N., Tang, B., Hackert, E. C. and Busalacchi, A. J. 1996. Mapping tropical Pacific sea level: data assimilation via a reduced state space Kalman filter. J. Geophys. Res. 101, 22 599-22 617.
    • Chang, P., Ji, L. and Saravanan, R. 2001. A hybrid coupled model study of tropical Atlantic variability. J. Climate 14, 361-390.
    • Chang, P., Saravanan, R., DelSole, T. and Wang, F. 2004a. Predictability of linear coupled systems. Part I: theoretical analysis. J. Climate 17, 1474-1486.
    • Chang, P., Saravanan, R., Wang, F. and Ji, L. 2004b. Predictability of linear coupled systems. Part II: an application to a simple model of tropical Atlantic variability. J. Climate 17, 1487-1503.
    • Coppel, W. A. 1965. Stability and Asymptotic Behavior of Differential Equations. D.C. Heath and Co., Boston, 166 pp.
    • Crommelin, D. T. and Majda, A. J. 2004. Strategies for model reduction: comparing different optimal bases. J. Atmos. Sci. 61, 2206-2217.
    • D'Andrea, F. and Vautard, R. 2001. Extratropical low-frequency variability as a low dimensional problem. Part I: a simplified model. Q. J. R. Meteorol. Soc. 127, 1357-1375.
    • Dullerud, G. E. and Paganini, F. 2000. A Course in Robust Control Theory: A Convex Approach. Springer-Verlag, Berlin, 440 pp.
    • Eckart, C. and Young, G. 1936. The approximation of one matrix by another of lower rank. Psychometrica 1, 211-218.
    • Farrell, B. F. and Ioannou, P. J. 1996a. Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53, 2025-2040.
    • Farrell, B. F. and Ioannou, P. J. 1996b. Generalized stability theory. Part II: non-autonomous operators. J. Atmos. Sci 53, 2041-2053.
    • Farrell, B. F. and Ioannou, P. J. 2001a. Accurate low-dimensional approximation of the linear dynamics of fluid flow. J. Atmos. Sci. 58, 2771-2789.
    • Farrell, B. F. and Ioannou, P. J. 2001b. State estimation using a reducedorder Kalman filter. J. Atmos. Sci. 58, 3666-3680.
    • Hasselmann, K. 1988. PIPs and POPs: the reduction of complex dynamical systems using principal interaction and oscillation patterns. J. Geophys. Res. 93, 11 015-11 021.
    • Holmes, P., Lumley, J. L. and Berkooz, G. 1996. Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge, 420 pp.
    • Huffel, S. V. and Vandewalle, J. 1991. The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia, 300 pp.
    • Johnson, S. D., Battisti, D. S. and Sarachik, E. S. 2000. Empirically derived Markov models and prediction of tropical Pacific sea surface temperature anomalies. J. Climate 13, 3-17.
    • Kalnay, E., Lord, S. J. and McPherson, B. D. 1998. Maturity of operational numerical weather prediction: medium range. Bull. Am. Meteorol. Soc. 79, 2753-2892.
    • Kaplan, A., Kushnir, Y., Cane, M. A. and Blumenthal, M. B. 1997. Reduced space optimal analysis for historical data sets: 136 years of Atlantic sea surface temperature. J. Geophys. Res. 102, 27 835-27 860.
    • Kwasniok, F. 2004. Empirical low-order models of barotropic flow. J. Atmos. Sci. 61, 235-245.
    • Lall, S., Marsden, J. E. and Glavasˇki, S. 2002. A subspace approach to balanced truncation for model reduction of non-linear control systems. Int. J. Robust Nonlinear Control 12, 519-535.
    • Lorenz, E. N. 1965. A study of the predictability of a 28-variable atmospheric model. Tellus 17, 321-333.
    • Lorenz, E. N. 1969. The predictability of a flow which possesses many scales of motion. Tellus 21, 289-307.
    • Majda, A. J., Timofeyev, I. and Vanden-Eijnden, E. 2003. Systematic strategies for stochastic mode reduction in climate. J. Atmos. Sci. 60, 1705-1722.
    • Marcus, M. and Minc, H. 1992. A Survey of Matrix Theory and Matrix Inequalities. Dover, New York, reprint edition. 180 pp.
    • Mirsky, L. 1960. Symmetric gauge functions and unitarily invariant norms. Q. J. Math. 11, 50-59.
    • Moore, B. C. 1981. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom. Control AC-26, 17-32.
    • Mori, T., Fukuma, N. and Kuwahara, M. 1987. Bounds in the Lyapunov matrix differential equation. IEEE Trans. Autom. Control AC-32, 55- 57.
    • Munk, W. H. 1960. Smoothing and persistence. J. Meteorol. 17, 92-93.
    • Neumaier, A. and Schneider, T. 2001. Estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Software 27, 27-57.
    • Obinata, G. and Anderson, B. D. O. 2000. Model Reduction for Control System Design. Springer-Verlag, Berlin, 165 pp.
    • Patil, D. J., Hunt, B. R., Kalnay, E., Yorke, J. A. and Ott, E. 2001. Local low dimensionality of atmospheric dynamics. Phys. Rev. Lett. 86, 5878-5881.
    • Penland, C. and Magorian, T. 1993. Prediction of Nin˜o 3 sea surface temperatures using linear inverse modeling. J. Climate 6, 1067-1076.
    • Preisendorfer, R. W. 1988. Principal Component Analysis in Meteorology and Oceanography. Elsevier, Amsterdam, 425 pp.
    • Roulston, M. S. and Neelin, J. D. 2003. Non-linear coupling between modes in a low-dimensional model of ENSO. Atmos. Ocean 41, 217- 231.
    • Schneider, T. and Griffies, S. M. 1999. A conceptual framework for predictability studies. J. Climate 12, 3133-3155.
    • Selten, F. M. 1995. An efficient description of the dynamics of barotropic flow. J. Atmos. Sci. 52, 915-936.
    • Selten, F. M. 1997. Baroclinic empirical orthogonal functions as basis functions in an atmospheric model. J. Atmos. Sci. 54, 2099-2114.
    • Timmermann, A., Voss, H. U. and Pasmanter, R. 2001. Empirical dynamical system modeling of ENSO using non-linear inverse techniques. J. Phys. Oceanogr. 31, 1579-1598.
    • Tippett, M. K. and Chang, P. 2003. Some theoretical considerations on predictability of linear stochastic dynamics. Tellus 55A, 148- 157.
    • Wang, R. 2001. Prediction of seasonal climate in a low-dimensional phase space derived from the observed SST forcing. J. Climate 14, 77-97.
    • Winkler, C. R., Newman, M. and Sardeshmukh, R. D. 2001. A linear model of wintertime low-frequency variability. Part I: formulation and forecast skill. J. Climate 14, 4474-4494.
    • Xue, Y., Cane, M. A., Zebiak, S. E. and Blumenthal, M. B. 1994. On the prediction of ENSO: A study with a low-order Markov model. Tellus 46A, 512-528.
    • Zhang, Y. and Held, I. M. 1999. A linear stochastic model of a GCM's midlatitude storm tracks. J. Atmos. Sci. 56, 3416-3435.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from