LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Petrik, Ronny; Baldauf, Michael; Schlünzen, Heinke; Gassmann, Almut (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article
Subjects:
The monitoring of conservation properties is essential for model development and for the investigation of the hydrological cycle. This is especially relevant for models that do not solve equations in flux form and do not apply a finite volume discretization. The conservation properties of the mesoscale model COSMO are evaluated by using a finite volume diagnostic approach. That is the subdomain budget of energy, water mass and total mass are diagnosed in a control volume that can be placed at each site in the model domain and is independent of the grid size. Thus, this diagnostic method has the major advantage that it can be applied to realistic simulations. The application of the diagnostic method to the COSMO model reveals a good preservation of the water mass, but large errors in energy and total mass conservation. The analysis shows to which extent errors in the treatment of thermodynamical processes, numerical filters and moisture advection schemes contaminate the subdomain budgets. In this paper we will show that the application of a saturation adjustment scheme under a fixed volume condition is required for models, which use the non-hydrostatic equations and height-based coordinates. Also, a further extension of the model physics will be introduced and discussed for a realistic test case.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Baldauf, M. 2008. A tool for testing conservation properties in the COSMO-model, COSMO Newsletter No. 7, Deutscher Wetterdienst, Offenbach a. M., Germany.
    • Bott, A. 1989. A positive definite advection scheme obtained by nonlinear renormalization of the advective fluxes. Mon. Wea. Rev. 117, 1006-1015.
    • Bryan, G. H. and Fritsch, J. M. 2002. A benchmark simulation for moist nonhydrostatic numerical models. Mon. Wea. Rev. 130, 2917-2928.
    • Catry, B., Geleyn, J.-F., Tudor, M., Be´nard, P. and Troja´kova, A. 2007. Flux-conservative thermodynamic equations in a mass-weighted framework. Tellus 59A, 71-79.
    • Doms, G. 2004. Test of the moisture mass conservation in LM, COSMO Newsletter No. 3, Deutscher Wetterdienst, Offenbach a. M., Germany.
    • Doms, G. and Schaettler, U. 2002. A description of the nonhydrostatic Regional Model LM - part I: dynamics and numerics, DWD Documentation, Deutscher Wetterdienst, Offenbach a. M., Germany.
    • Doms, G., Foerstner, J., Heise, E., Herzog, H.-J., Raschendorfer, M. and co-authors. 2002. A description of the nonhydrostatic Regional Model LM - part II: physical parametrization, DWD Documentation, Deutscher Wetterdienst, Offenbach a. M., Germany.
    • Doswell, C. A. and Rasmussen, E. N. 1994. The effect of neglecting the virtual temperature correction on cape calculation. Wea. Forecast. 9, 625-629.
    • Dudhia, J. 1993. A nonhydrostatic version of the penn state-ncar mesoscale model: validation tests and simulation of an atlantic cyclone and cold front. Mon. Wea. Rev. 121, 1493-1513.
    • Durran, D. R. 1999. Numerical methods for wave equations in geophysical fluid dynamics. In: Texts in Applied Mathematics, 1st Edition. (ed. Durran, D. R.). Springer-Verlag, New York, USA.
    • Emanuel, K. A. (ed.) 1994. Atmospheric convection, 1st Edition. Oxford University Press, New York.
    • Ferziger, J. H. and Peric, M. 2002. Computational methods for fluid dynamics. In: Motion and Motion Systems, 3rd Edition (eds. Ferziger, J. H. and Peric, M.). Springer-Verlag, Berlin, Heidelberg.
    • Fo¨rstner, J., Baldauf, M. and Seifert, A. 2006. Courant number independent advection of the moisture quantities for the LMK, COSMO Newsletter No. 6, Deutscher Wetterdienst, Offenbach a. M., Germany.
    • Gassmann, A. 2002. Nummerische Verfahren in der nichthydrostatischen Modellierung und ihr Einfluss auf die Gu¨te der Niederschlagsvorhersage. PhD thesis, University of Bonn.
    • Gassmann, A. and Herzog, H.-J. 2008. Towards a consistent numerical compressible nonhydrostatic model using generalized hamiltonian tools. Quart. J. R. Meteor. Soc. 134, 1597-1613.
    • Lord, S., Willoughby, H. and Piotrowicz, J. 1984. Role of parameterized ice-phase microphysics in an axisymmetric nonhydrostatic tropical cyclone model. J. Atmos. Sci. 41, 2836-2848.
    • Satoh, M. 2003. Conservative scheme for a compressible nonhydrostatic model with moist processes. Mon. Wea. Rev. 131, 1033-1049.
    • Schlu¨nzen, K. H. 1997. On the validation of high-resolution atmospheric mesoscale models. J. Wind Eng. Ind. Aerodyn. 67,68, 479-492.
    • Schlu¨nzen, K. H., Stahlschmidt, T., Rebers, A., Niemeier, U., Kriews, M. and co-authors. 1997. Concept and realization of the mesoscale transport- and fluid-model 'METRAS', METRAS Techn. Rep, Meteorologisches Institut, Universita¨t Hamburg, Hamburg, Germany.
    • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M. and co-authors. 2005. A description of the Advanced Research WRF version 2, NCAR Tech. Note, Mesoscale and Microscale Meteorology Devision NCAR, Boulder, Colorado, USA.
    • Staniforth, A. and Cote, J. 1991. Semi-lagrangian integration schemes for atmospheric model: a review. J. Geophys. Res. 119, 2206- 2223.
    • Steppeler, J., Doms, G., Scha¨ttler, U., Bitzer, H. W., Gassmann, A., and co-authors. 2003. Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteor. Atmos. Phys. 82, 75-96.
    • Tiedtke, M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large scale models. Mon. Wea. Rev. 117, 1779- 1799.
    • Wacker, U., Frisius, T. and Herbert, F. 2006. Evaporation and precipitation surface effects in local mass continuity laws of moist air. J. Atmos. Sci. 63, 2642-2652.
    • Wacker, U. and Herbert, F. 2003. Continuity equations as expressions for local balances of masses in cloudy air. Tellus 55, 247-254.
    • Weisman, M. L. and Klemp, J. B. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Mon. Wea. Rev. 110, 504-520.
    • Wicker, L. J. and Skamarock, W. C. 2002. Time-splitting methods for elastic models using forward time schemes. Mon. Wea. Rev. 130, 2088-2097.
    • Xue, M., Droegemeier, K. K. and Wong, V. 2000. ARPS: a multiscale nonhydrostatic atmospheric simulation and prediction tool. part I : model dynamics and verification. Meteor. Atmos. Physics. 75, 161-193.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from