LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
David T. Ho; Rik Wanninkhof (2016)
Publisher: Taylor & Francis Group
Journal: Tellus: Series B
Languages: English
Types: Article
Subjects: Meteorology. Climatology, QC851-999, North Atlantic, Air-sea gas exchange, 3He/SF6 dual tracer technique, North Atlantic, air–sea gas exchange, 3He/SF6 dual tracer technique
GasEx-98 was the first open-ocean process study where gas transfer velocity measurements were made with several robust techniques, including airside eddy covariance of CO2 and deliberate injection of 3He and SF6. While the CO2 eddy covariance results have been fully analysed and publicised, leading to a boom in the use of this technique in the marine environment, the 3He/SF6 results have not received the same level of analysis. Here, based on new approaches that we have developed to analyse 3He/SF6 data in the subsequent years, we revisit the 3He/SF6 dual tracer results from GasEx-98 and show that they are consistent with the results from other parts of the coastal and open ocean, and that they are in agreement with current parameterisations between wind speed and gas exchange for slightly soluble gases over the ocean at intermediate wind speeds.Keywords: air–sea gas exchange, 3He/SF6 dual tracer technique, North Atlantic(Published: 11 May 2016)
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Broecker, W. S., Peng, T.-H., O¨stlund, G. and Stuiver, M. 1985. The distribution of bomb radiocarbon in the ocean. J. Geophys. Res. 99, 6953 6970. DOI: http://dx.doi.org/10.1029/JC090iC04p06953
    • Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B. and Young, G. S. 1996. Bulk parameterization of air sea fluxes for tropical ocean global atmosphere coupled ocean atmosphere response experiment. J. Geophys. Res. 101, 3747 3764.
    • Ho, D. T., Law, C. S., Smith, M. J., Schlosser, P., Harvey, M. and co-authors. 2006. Measurements of air sea gas exchange at high wind speeds in the Southern Ocean: implications for global parameterizations. Geophys. Res. Lett. 33, L16611. DOI: http:// dx.doi.org/10.1029/2006GL026817
    • Ho, D. T., Sabine, C. L., Hebert, D., Ullman, D. S., Wanninkhof, R. and co-authors. 2011a. Southern Ocean Gas Exchange Experiment: setting the stage. J. Geophys. Res. 116, C00F08. DOI: http://dx.doi.org/10.1029/2010jc006852
    • Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D. and co-authors. 2011b. Towards a universal relationship between wind speed and gas exchange: gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment. J. Geophy. Res. 116, C00F04. C10010, DOI: http://dx.doi.org/10. 1029/2010JC006854
    • Hood, E. M., Wanninkhof, R. and Merlivat, L. 2001. Short timescale variations of fCO2 in a North Atlantic warm-core eddy: results from the Gas-Ex 98 carbon interface ocean atmosphere (CARIOCA) buoy data. J. Geophys. Res. 106, 2561 2572.
    • Kim, D. O., Lee, K., Choi, S. D., Kang, H. S., Zhang, J. Z. and co-authors. 2005. Determination of diapycnal diffusion rates in the upper thermocline in the North Atlantic Ocean using sulfur hexafluoride. J. Geophys. Res. 110, C10010. DOI: http://dx.doi. org/10.1029/2004JC002835
    • Kleiss, J. M. and Melville, W. K. 2010. Observations of Wave breaking kinematics in fetch-limited seas. J. Phys. Oceanogr. 40, 2575 2604. DOI: http://dx.doi.org/10.1175/2010JPO4383.1
    • Kuss, J., Nagel, K. and Schneider, B. 2004. Evidence from the Baltic Sea for an enhanced CO2 air sea transfer velocity. Tellus B 56, 175 182. DOI: http://dx.doi.org/10.1111/j.1600- 0889.2004.00092.x
    • Law, C. S., Watson, A. J. and Liddicoat, M. I. 1994. Automated vacuum analysis of sulfur hexafluoride in seawater: derivation of the atmospheric trend (1970 1993) and potential as a transient tracer. Marine Chem. 48, 57 69. DOI: http://dx.doi.org/10. 1016/0304-4203(94)90062-0
    • Liss, P. S. and Merlivat, L. 1986. Air sea gas exchange rates: Introduction and synthesis. In: The Role of Air Sea Exchange in Geochemical Cycling (ed. P. Buat-Me´ nard). D. Reidel, Dordrecht, pp. 113 127.
    • Loose, B., McGillis, W. R., Perovich, D., Zappa, C. J. and Schlosser, P. 2014. A parameter model of gas exchange for the seasonal sea ice zone. Ocean. Sci. 10, 17 28. DOI: http://dx.doi. org/10.5194/os-10-17-2014
    • Ludin, A., Weppernig, R., Bo¨ nisch, G. and Schlosser, P. 1998. Mass spectrometric measurement of helium isotopes and tritium in water samples. Lamont-Doherty Earth Observatory, Palisades, NY, pp. 42.
    • McGillis, W. R., Edson, J. B., Hare, J. E. and Fairall, C. W. 2001a. Direct covariance air sea CO2 fluxes. J. Geophys. Res. 106, 16729 16745. DOI: http://dx.doi.org/10.1029/2000JC000506
    • McGillis, W. R., Edson, J. B., Ware, J. D., Dacey, J. W. H., Hare, J. E. and co-authors. 2001b. Carbon dioxide flux techniques performed during GasEx-98. Mar. Chem. 75, 267 280. DOI: http://dx.doi.org/10.1016/S0304-4203(01)00042-1
    • McGillis, W. R., Edson, J. B., Zappa, C. J., Ware, J. D., McKenna, S. P. and co-authors 2004. Air sea CO2 exchange in the equatorial Pacific. J. Geophys. Res. 109, C08S02. DOI: http://dx.doi.org/10.1029/2003JC002256
    • McNeil, C. and D'Asaro, E. 2007. Parameterization of air sea gas fluxes at extreme wind speeds. J. Mar. Syst. 66, 110 121. DOI: http://dx.doi.org/10.1016/j.jmarsys.2006.05.013
    • Nightingale, P. D., Liss, P. S. and Schlosser, P. 2000a. Measurements of air sea gas transfer during an open ocean algal bloom. Geophys. Res. Lett. 27, 2117 2120. DOI: http://dx.doi.org/10. 1029/2000GL011541
    • Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S. and co-authors. 2000b. In situ evaluation of air sea gas exchange parameterizations using novel conservative and volatile tracers. Glob. Biogeochem. Cycle. 14, 373 387. DOI: http:// dx.doi.org/10.1029/1999GB900091
    • Peng, T. H., Broecker, W. S., Mathieu, G. G., Li, Y. H. and Bainbridge, A. E. 1979. Radon evasion rates in the Atlantic and Pacific Oceans as determined during the GEOSECS program. J. Geophys. Res. 84, 2471 2486. DOI: http://dx.doi.org/10.1029/ JC084iC05p02471
    • Salter, M. E., Upstill-Goddard, R. C., Nightingale, P. D., Archer, S. D., Blomquist, B. and co-authors. 2011. Impact of an artificial surfactant release on air sea gas fluxes during Deep Ocean Gas Exchange Experiment II. J. Geophys. Res. 116. C11016. DOI: http://dx.doi.org/10.1029/2011jc007023
    • Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G. and co-authors 2007. Constraining global air sea gas exchange for CO2 with recent bomb C-14 measurements. Glob. Biogeochem. Cycle. 21, GB2015. DOI: http://dx.doi.org/10. 1029/2006GB002784
    • Wanninkhof, R. 1992. Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res. 97, 7373 7381. DOI: http://dx.doi.org/10.1029/92JC00188
    • Wanninkhof, R., Asher, W., Weppernig, R., Chen, H., Schlosser, P. and co-authors 1993. Gas transfer experiment on Georges Bank using two volatile deliberate tracers. J. Geophys. Res. 98, 20237 20248. DOI: http://dx.doi.org/10.1029/93JC01844
    • Wanninkhof, R., Hitchcock, G., Wiseman, B., Vargo, G., Ortner, P. B. and co-authors 1997. Gas exchange, dispersion, and biological productivity on the West Florida Shelf: results from a Lagrangian Tracer Study. Geophys. Res. Lett. 24, 1767 1770, DOI: http://dx.doi.org/10.1029/97GL01757
    • Wanninkhof, R. and McGillis, W. R. 1999. A cubic relationship between air sea CO2 exchange and wind speed. Geophys. Res. Lett. 26, 1889 1892. DOI: http://dx.doi.org/10.1029/1999GL900363
    • Wanninkhof, R., Sullivan, K. F. and Top, Z. 2004. Air sea gas transfer in the Southern Ocean. J. Geophys. Res. 109, C08S19. DOI: http://dx.doi.org/10.1029/2003JC001767
    • Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C. and McGillis, W. R. 2009. Advances in Quantifying Air Sea Gas Exchange and Environmental Forcing. Ann. Rev. Mar. Sci. 1, 213 244. DOI: http://dx.doi.org/10.1146/annurev.marine. 010908.163742
    • Wanninkhof, R. 2014. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 12, 351 362. DOI: http://dx.doi.org/10.4319/lom.2014.12.351
    • Watson, A. J., Upstill-Goddard, R. C. and Liss, P. S. 1991. Air sea gas exchange in rough and stormy seas measured by a dual tracer technique. Nature. 349, 145 147. DOI: http://dx.doi. org/10.1038/349145a0
    • Zhang, J.-Z., Wanninkhof, R. and Lee, K. 2001. Enhanced new production observed from the diurnal cycle of nitrate in an oligotrophic anticyclonic eddy. Geophys. Res. Lett. 28, 1579 1582. DOI: http://dx.doi.org/10.1029/2000GL012065
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article