LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Launiainen, Samuli; Vesala, Timo; Mölder, Meelis; Mammarella, Ivan; Smolander, Sampo; Rannik, Üllar; Kolari, Pasi; Hari, Pertti; Lindroth, Anders; Katul, Gabriel G. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Among the fundamental problems in canopy turbulence, particularly near the forest floor, remain the local diabatic effects and linkages between turbulent length scales and the canopy morphology. To progress on these problems, mean and higher order turbulence statistics are collected in a uniform pine forest across a wide range of atmospheric stability conditions using five 3-D anemometers in the subcanopy. The main novelties from this experiment are: (1) the agreement between second-order closure model results and measurements suggest that diabatic states in the layer above the canopy explain much of the modulations of the key velocity statistics inside the canopy except in the immediate vicinity of the trunk space and for very stable conditions. (2) The dimensionless turbulent kinetic energy in the trunk space is large due to a large longitudinal velocity variance but it is inactive and contributes little to momentum fluxes. (3) Near the floor layer, a logarithmic mean velocity profile is formed and vertical eddies are strongly suppressed modifying all power spectra. (4) A spectral peak in the vertical velocity near the ground commensurate with the trunk diameter emerged at a moderate element Reynolds number consistent with Strouhal instabilities describing wake production.DOI: 10.1111/j.1600-0889.2007.00313.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Albertson, J. D., Katul, G. G. and Wiberg, P. 2001. Relative importance of local and regional controls on coupled water, carbon, and energy fluxes. Adv. Water Resour. 24, 1103-1118.
    • Allen, L. H., Jr. 1968. Turbulence and wind spectra within a japanese larch plantation. J. Appl. Meteorol. 7, 73-78.
    • Amiro, B. D. and Davis, P. A. 1988. Statistics of atmospheric turbulence within a natural black spruce forest canopy. Boundary-Layer Meteorol. 44, 267-283.
    • Amiro, B. D. 1990. Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol. 51, 99-121.
    • Antonia, R. A. 1981. Conditional sampling in turbulence measurements. Annu. Rev. Fluid Mech. 13, 131-156.
    • Aubinet, M., Grelle, A., Ibrom, A., Rannik, U¨ ., Monchrieff, J. and coauthors. 2000. Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv. Ecol. Res. 30, 113- 178.
    • Aubinet, M., Heinesch, B. and Yernaux, M. 2003. Horizontal and vertical CO2 advection in a sloping forest. Boundary-Layer Meteorol. 108, 397-417.
    • Baldocchi, D. D. and Hutchison, B. A. 1988. Turbulence structure in an almond orchard: spatial vatiation in spectra and coherence. BoundaryLayer Meteorol. 42, 293-311.
    • Baldocchi, D. D., Finnigan, J. J., Wilson, K., Paw, U. K. T. and Falge, E. 2000. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorol. 96, 257- 291.
    • Baldocchi, D. D. and Meyers, T. P. 1988a. Turbulence structure in a deciduous forest. Boundary-Layer Meteorol. 43, 345-364.
    • Baldocchi, D. D. and Meyers, T. P. 1988b. A Spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorol. 45, 31-58.
    • Baldocchi, D. D. and Vogel, C. A. 1996. Energy and CO2 flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiol. 16, 5-16.
    • Bergstro¨m, H. and Ho¨gstro¨m, U. 1989. Turbulent exchange above a pine forest II: organized structures. Boundary-Layer Meteorol. 49, 231- 263.
    • Black, T. A., Den Hartog, G., Neumann, H. H., Blanken, P. D., Yang, P. C. and co-authors. 1996. Annual cycles of water vapour and carbon dioxide fluxes in and above a boreal Aspen forest. Global Change Biol. 2, 219-229.
    • Bosveld, F. C., Holtslag, A. A. M. and Van Den Hurk, J. J. M. 1999. Nighttime convection in the interior of a dense Douglas-fir forest. Boundary-Layer Meteorol. 93, 171-195.
    • Brunet, Y. and Irvine, M. R. 2000. The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol. 94, 139- 163.
    • Cajander, A. K. 1909. Ueber Wadtypen. Acta Forestalia Fennica 1, 1- 176 (In German).
    • Cava, D., Katul, G. G., Scrimieri, A., Poggi, D., Cescatti, A. and coauthors. 2006. Buoyancy and sensible heat flux budget within dense canopies. Boundary-Layer Meteorol. 118, 217-240.
    • Chu, C. R., Parlange, M. B., Katul, G. G. and Albertson, J. D. 1996. Probability density functions of turbulent velocity and temperature in the atmospheric surface layer. Water Resour. Res. 32, 1681- 1688.
    • Cionco, R. M. 1972. Intensity of turbulence within canopies with simple and complex roughness elements. Boundary-Layer Meteorol. 2, 453- 465.
    • Dwyer, M. J., Patton, E. G. and Shaw, R. H. 1997. Turbulent kinetic energy budgets from a large-eddy simulation of airflow above and within a forest canopy. Boundary-Layer Meteorol. 84, 23-43.
    • Feigenwinter, C., Bernhofer, C. and Vogt, R. 2004. The influence of advection on the short term CO2-budget in and above a forest canopy. Boundary-Layer Meteorol. 113, 201-224.
    • Finnigan, J. 2000. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech. 32, 519-571.
    • Finnigan, J. 2004. A re-evaluation of long-term flux measurement techniques Part II: coordinate systems. Boundary-Layer Meteorol. 113, 1-41.
    • Finnigan, J., Clement, R., Malhi, Y., Leuning, R. and Cleugh, A. 2003. A re-evaluation of long-term flux measurement techniques Part I: averaging and coordinate rotation. Boundary-Layer Meteorol. 107, 1-48.
    • Finnigan, J. and Shaw, R. H. 2000. A wind-tunnel study of airflow in waving wheat: an EOF analysis of the structure of the large-eddy motion. Boundary-Layer Meteorol. 96, 211-255.
    • Foken, T. 2006. 50 years of Monin-Obukhov similarity theory. BoundaryLayer Meteorol. 119, 431-447.
    • Green, S. R., Grace, J. and Hutchins, N. J. 1995. Observations of turbulent air flow in three stands of widely spaced Sitka spruce. Agric. For. Meteorol. 74, 205-225.
    • Harman, I. N. and Finnigan, J. J. 2007. A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol. 123, 339-363.
    • Hsieh, C. I., Siqueira, M., Katul, G. G. and Chu, C. R. 2003. Predicting scalar source-sink and flux distribution within a forest canopy using 2-D Lagrangian stochastic model. Boundary-Layer Meteorol. 109, 113-138.
    • Ilvesniemi, H. and Liu, C. 2001. Biomass distribution in a young Scots pine stand. Bor. Env. Res. 6, 3-8.
    • IPCC. 2001. In: Climate Change 2001: The Scientific Basis, Contribution on working group I to the Third Assesment Report of the Intergovernmental Panel on Climate Change (IPCC) (eds J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden and D. Xiaosu). Cambridge University Press, U.K., 1-944.
    • Kaimal, J. C. and Kristensen, L. 1991. Time series tapering for short data samples. Boundary-Layer Meteorol. 57, 187-194.
    • Kaimal, J. C. and Finnigan, J. J. 1994. Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, Oxford.
    • Kaimal, J. C., Wyngard, J. C., Izumi, Y. and Cote, O. R. 1972. Spectral characteristics of surface-layer turbulence. Q. J. R. Meteorol. Soc. 98, 563-589.
    • Katul, G. G. and Albertson, J. D. 1998. An investigation of higher order closure models for a forested canopy. Boundary Layer Meteorol. 89, 47-74.
    • Katul, G. G., Cava, D., Poggi, D., Albertson, J. D. and Mahrt, L. 2004. Stationarity, Homogeneity, and Ergodicity in canopy turbulence. In: Handbook of Micrometeorology (eds X. Lee, W. Massman and B. Law et al.). Kluwer Academic Publishers, Dordrecht, 161-180.
    • Katul, G. G. and Chang, W. H. 1999. Principal length scales in secondorder closure models for canopy turbulence. J. Appl. Meteorol. 38, 1631-1643.
    • Katul, G. G., Hsieh, C. I., Kuhn, G., Ellsworth, D. and Nie, D. 1997b. The turbulent eddy motion at the forest-atmosphere interface. J. Geophys. Res. 102, 13409-13421.
    • Katul, G. G., Oren, R., Ellsworth, D., Hsieh, C. I., Phillips, N. and coauthors. 1997a. A Lagrangian dispersion model for predicting CO2 sources, sinks and fluxes in a uniform Loblolly pine (Pinus taeda L.) stand. J. Geophys. Res. 102, 9309-9321.
    • Katul, G. G., Poggi, D., Cava, D. and Finnigan, J. 2006. The relative importance of ejections and sweeps to momentum transfer in the atmospheric boundary layer. Boundary-Layer Meteorol. 120, 367- 375.
    • Kolari, P., Pumpanen, J., Kulmala, L., Ilvesniemi, H., Nikinmaa, E. and co-authors. 2006. Forest floor vegetation plays an important role in photosynthetic production of boreal forests. Forest Ecol. Manag. 221, 241-248.
    • Kruijt, B., Malhi, Y., Lloyd, J., Nobre, A. D., Miranda, A. C. and coauthors. 2000. Turbulence statistics above and within two Amazon rain forest canopies. Boundary-Layer Meteorol. 94, 297-331.
    • Lai, C.-T., Katul, G., Butnor, J., Ellsworth, D. and Oren, R. 2002. Modelling night-time ecosystem respiration by a constrained source optimization method. Global Change Biol. 8, 124-141.
    • Launiainen, S., Pumpanen, J., Mo¨lder, M., Kulmala, L., Lankreijer, H. and co-authors. 2006. Vertical variations in fluxes and turbulence characteristics within a forest - a joint NECC-campaign in Hyytia¨la¨, Southern Finland. In: Proceeding of BACCI, NECC and FcoE activities 2005 book B, Report Series in Aerosol Sciences 81A (eds M. Kulmala, A. Lindroth and T. M. Ruuskanen). Helsinki, Finland.
    • Launiainen, S., Rinne, J., Pumpanen, J., Kulmala, L., Kolari, P. and coauthors. 2005. Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunkspace. Bor. Environ. Res. 10, 569-588.
    • Law, B. E., Kelliher, F. M., Baldocchi, D. D., Anthoni, P. M., Irvine, J. and co-authors. 2001. Spatial and temporal variation in respiration in a young ponderosa pine forest during a summer drought. Agric. For. Meteorol. 110, 27-43.
    • Leclerc, M. Y., Beissner, K. C., Shaw, R. H., Den Hartog, G. and Neumann, H. H. 1990. The influence of atmospheric stability on the budgets of the reynolds stress and turbulent kinetic energy within and above a deciduous forest. J. Appl. Meteorol. 29, 916-933.
    • Leclerc, M. Y., Beissner, K. C., Shaw, R. H., Den Hartog, G. and Neumann, H. H. 1991. The influence of buoyancy on third-moment turbulent velocity statistics within a deciduous forest. Boundary-Layer Meteorol. 55, 109-123.
    • Lee, X. 2000. Air motion within and above forest vegetation in non-ideal conditions. Forest Ecol. Manag. 135, 3-18.
    • Lee, X. and Black, T. A. 1993a. Atmospheric turbulence within and above a Douglas-fir stand. Part I: statistical properties of the velocity field. Boundary-Layer Meteorol. 64, 149-174.
    • Lee, X. and Black, T. A. 1993b. Atmospheric turbulence within and above a Douglas-fir stand. Part II: eddy fluxes of sensible heat and water vapour. Boundary-Layer Meteorol. 64, 369-389.
    • Lee, Y.-H. and Mahrt, L. 2005. Effect of stability on mixing in open canopies. Agric. For. Meteorol. 135, 169-179.
    • Legg, J. B., Raupach, M. R. and Coppin, P. A. 1986. Experiments on scalar dispersion within a model plant canopy. Part III. An elevated line source. Boundary-Layer Meteorol. 35, 277-302.
    • Leuning, R. 2000. Estimation of scalar source/sink distributions in plant canopies using Lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multilayer canopy model. Boundary-Layer Meteorol. 96, 293-314.
    • Lien, R.-C. and D'Asaro, E. 2002. The Kolmogorov constant for the Lagrangian velocity spectrum and structure function. Phys. Fluids 14, 4456-4459.
    • Loescher, H. W., Ocheltree, T., Tanner, B., Swiatek, E., Dano, B. and co-authors. 2005. Comparison of temperature and wind statistics in contrasting environments among different sonic anemometerthermometers. Agric. For. Meteorol. 133, 119-139.
    • Mahrt, L., Lee, X., Black, A., Neumann, H., Staebler, R. M. 2000. Nocturnal mixing in a forest subcanopy. Agric.For. Meteorol. 101, 67-78.
    • Mahrt, L., Sun, J., Blumen, W., Delany, T. and Oncley, S. 1998. Nocturnal boundary-layer regimes. Boundary-Layer Meteorol. 88, 255-278.
    • Markkanen, T., Rannik, U¨., Marcolla, B., Cescatti, A. and Vesala, T. 2003. Footprints and fetches for fluxes over forest canopies with varying structure and density. Boundary-Layer Meteorol. 106, 437- 459.
    • Massman, W. J. and Weil, J. C. 1999. An analytical one-dimensional second-order closure model of turbulence statistics and the Lagrangian time scale within and above plant canopies of arbitrary structure. Boundary-Layer Meterorol. 91, 81-107.
    • Mo¨lder, M., Klemedtsson, L. and Lindroth, A. 2004. Turbulence characteristics and dispersion in a forest - tests of Thomson's random-flight model. Agric. For.Meteorol. 127, 203-222.
    • Novak, M. D., Warland, J. S., Orchansky, A. L., Ketler, R. and Green, S. 2000. Wind tunnel and field measurements of turbulent flow in forests. Part I: uniformly thinned stands. Boundary-Layer Meteorol. 95, 457-495.
    • Peltola, A. 2001. Metsa¨tilastollinen vuosikirja (Finnish Statistical Yearbook of Forestry). Finnish Forest Research Institute, Vammala. (In Finnish).
    • Poggi, D. and Katul, G. G. 2006. Two-dimensional scalar spectra in the deeper layers of a dense and uniform model canopy. Boundary Layer Meteorol. 121, 267-281.
    • Poggi, D., Katul, G. G. and Albertson, J. D. 2004b. Momentum transfer and turbulent kinetic energy budgets within a dense model canopy. Boundary-Layer Meteorol. 111, 589-614.
    • Poggi, A., Porporato, A., Ridolfi, L., Albertson, J. D. and Katul, G. G. 2004a. The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111, 565-587.
    • Poggi, D., Katul, G. G. and Albertson, J. D. 2006. Scalar dispersion within a model canopy: measurements and three-dimensional Lagrangian models. Adv. Water Resour. 29, 326-335.
    • Pumpanen, J., Launiainen, S., Kulmala, L., Ja¨rvi, L., Markkanen, T. and co-authors. 2006. Nighttime CO2 storages below forest canopy estimated from continuous CO2 concentration profile measurements with NDIR-based CO2 probes. In: Proceeding of BACCI, NECC and FcoE activities 2005 book B, Report Series in Aerosol Sciences 81B (eds M. Kulmala, A. Lindroth and T. M. Ruuskanen). Helsinki, Finland.
    • Rannik, U¨ . 1998. On the surface layer similarity at a complex forest site. J. Geophy. Res. D 103, 8685-8697.
    • Rannik, U¨., Markkanen, T., Raittila, J., Hari, P. and Vesala, T. 2003. Turbulence inside and over Forest: influence on Footprint Prediction. Boundary Layer Meteorol. 109, 163-189.
    • Raupah, M. R. 1989. Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteorol. 47, 85-108.
    • Raupach, M. R., Coppin, P. A. and Legg, B. J. 1986. Experiments on scalar dispersion within a model plant canopy, Part I: the turbulent structure. Boundary-Layer Meteorol. 35, 21-52.
    • Raupach, M. R., Finnigan, J. J. and Brunet, Y. 1996. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary Layer Meteorol. 78, 351-382.
    • Raupach, M. R. and Thom, A. S. 1981. Turbulence in and Above Plant Canopies. Annu. Rev. Fluid Mech. 13, 97-129.
    • Shaw, R. H. 1977. Secondary Wind Speed Maxima Inside Plant Canopies. J. Appl. Meteorol. 16, 514-521.
    • Shaw, R. H., Den Hartog, G. and Neumann, H. H. 1988. Influence of foliar density and thermal stability on profiles of Reynolds stress and turbulence intensity in a deciduous forest. Boundary-Layer Meteorol. 45, 391-409.
    • Siqueira, M., Lai, C. T. and Katul, G. G. 2000. Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and Hybrid inverse models. J. Geophys. Res. 105, 29475-29488.
    • Staebler, R. M. and Fitzjarrald, D. R. 2004. Observing subcanopy CO2 advection. Agric. For. Meteorol. 122, 139-156.
    • Stenberg, P., Palmroth, S., Bond, B. J., Sprugel, D. G. and Smolander, H. 2001. Shoot structure and photosynthetic efficiency along the light gradient in a Scots pine canopy. Tree Physiol. 21, 805-814.
    • Strong, C., Fuentes, J. D. and Baldocchi, D. D. 2004. Reactive hydrocarbon flux footprints during canopy senescence. Agric. For. Meteorol. 127, 159-173.
    • Su, H.-B., Shaw, R. H. and Paw, U. K.T. 2000. Two-point correlation analysis of neutrally stratified flow within and above a forest from large-eddy simulation. Boundary-Layer Meteorol. 49, 423-460.
    • Suni, T., Rinne, J., Rannik, U¨ ., Reissell, A., Altimir, N. and co-authors. 2003. Long-term measurements of surface fluxes above a Scots pine forest in Hyytia¨la¨, southern Finland, 1996-2001. Bor. EnvIRON. Res. 8, 287-302.
    • Taylor, G. I. 1921. Diffusion by continuous movements. Proc. London Math. Soc. 20, 196-212.
    • Tennekes, H. 1979. Exponential Lagrangian correlation-function and turbulent-diffusion in the inertial subrange. Atmos. Environ. 13, 1565- 1567.
    • Thomson, D. J. 1987. Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529- 556.
    • Yi, C., Monson, R. K., Zhai, Z., Anderson, D. E., Lamb, B. and coauthors. P. 2005. Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J. Geophys. Res. 110, D22303, doi:10.1029/2005JD006282.
    • Vesala, T., Haataja, J., Aalto, P., Altimir, N., Buzorius, G. and co-authors. 1998. Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry. Trends Heat, Mass Momentum Transfer 4, 17-35.
    • Vesala, T., Suni, T., Rannik, U¨ ., Keronen, P., Markkanen, T. and co-authors. 2005. The effect of thinning on surface fluxes in a boreal forest. Global Biogeochem. Cycl. 19, GB2001, doi:10.1029/2004GB002316, 2005.
    • Villani, M. G., Schmid, H. P., Su, H.-B., Hutton, J. L. and Vogel, S. 2003. Turbulence Statistics Measurements in Northern Hardwood Forest. Boundary-Layer Meteorol. 108, 343- 364.
    • Wesson, K. H., Katul, G. G. and Siqueira, M. 2003. Quantifying organization of atmospheric turbulent eddy motion using nonlinear time series analysis. Boundary-Layer Meteorol. 106, 507- 525.
    • Wilson, N. R. and Shaw, R. H. 1977. A higher-order closure model for canopy Flow. J. Appl. Meteorol. 16, 1197-1205.
    • Zhang, H., Chen, J. and Park, S.-U. 2001. Turbulence structure in unstable conditions over various surfaces. Boundary-Layer Meteorol. 100, 243-261.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from