Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
KIRWAN JR., A. D. (2011)
Publisher: Co-Action Publishing
Journal: Tellus A
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics
A variational principle for an inviscid stratified fluid on a beta plane is developed for horizontal flows. For the special case of solenoidal flow on an f plane, it is shown that a certain velocity gradient invariant can be used to develop simple solutions to the equations of motion. The solution forms are critically dependent on relative magnitudes of the squared local vorticity and the squared total deformation.DOI: 10.1111/j.1600-0870.1984.tb00241.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Courant, R. and Hilbm. D. 1966. M e t W of mathematical physics, vol. 1. Interscience, New York, p. 561.
    • Dutton, J. A. 1976. The ceaseless wind. McGraw Hill, p. 579.
    • Ertel, H. 1942. Em neuer hydrodynamisher wirbelsatz. Metmrol. 2.59.277-28 I.
    • b e l , H. 1952. Uber die Physikdsche Bedeutung von Funktionen welchc in der Clebsch -Transformation der Hydrodynamischen Gleichungen auhreten. Sitzber. Akad. Wiss. B e t h KI: Math. allg. Natum 3.
    • Ertel, H. and Rossby, C. 0. 1949. A new Conservation theorem of hydrodynamics. Geufi. Pura e Appl. 14, 189- 193.
    • Fortak, H. 1963. Betrachtungen zur Divergenz- und Balancegleichung der dynamischm Meteorologk. Beitr. zur Phys. der Atmos. 36.1-8.
    • Henyey, F. S. 1983. Hamiltonian description of stratified fluid dynamics. Phys. Fluids 26,4047.
    • Herivel, J. W. 1955. The derivation of the equations of motion of an ideal fluid by Hamilton's principk. Proc. Comb.Phil. Soc.51,343-349.
    • Katz, J. and Lynden-Bell, D. 1982. A lagrangian for eulerian fluid mechanics. Proc. Roy. Soc. London A381,263-274.
    • Kuwan. A. D.1975.Occank velocity gradients. J . Phys. Oceamgr. 5,729-735.
    • Lin, C. C. 1963. Liquid helium Proc. Int. School of Physics, CourseXXI. New York, Academic Press.
    • Okubo, A. 1970. Horizontal dispersion of floatabk particks in the vicinity of velocity singularitiessuch as convergences. Deep-seaRes. 17,445454.
    • Petterssen. S. 1953. On the relation between vorticity, deformation, and divergence and the conllguration of the pressurefield. Tellus5.23 1-237.
    • Sasaki, Y. 1955. A fundamental study of numerical prediction based on the variational principle. J . Metmrol. Soc.Japan 33,262-275.
    • Sasaki, Y. 1957. On the motion of a vortex. J. Meteorol. Soc.Japan 35.1-9.
    • Stephens, J. J. 1965. A variationalapproach to numerical weather analysis and prediction. Ph.D. dissertation, Texas A dt M University.
    • Stephens, J. J. 1967. Variational statements of quasistatic and geostrophic equilibra. Beitr. zur Phys. der Atmos. 40, 163-167.
    • Truesdell. C. 1954. 7% Kinematics oJvortictty. Indiana University Press, Bloomington. p. 232.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from