Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ito, Akihiko; Sasai, Takahiro (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
This study addressed how different climate data sets influence simulations of the global terrestrial carbon cycle. For the period 1982–2001, we compared the results of simulations based on three climate data sets (NCEP/NCAR, NCEP/DOE AMIP-II and ERA40) employed in meteorological, ecological and biogeochemical studies and two different models (BEAMS and Sim-CYCLE). The models differed in their parameterizations of photosynthetic and phenological processes but used the same surface climate (e.g. shortwave radiation, temperature and precipitation), vegetation, soil and topography data. The three data sets give different climatic conditions, especially for shortwave radiation, in terms of long-term means, linear trends and interannual variability. Consequently, the simulation results for global net primary productivity varied by 16%–43% only from differences in the climate data sets, especially in these regions where the shortwave radiation data differed markedly: differences in the climate data set can strongly influence simulation results. The differences among the climate data set and between the two models resulted in slightly different spatial distribution and interannual variability in the net ecosystem carbon budget. To minimize uncertainty, we should pay attention to the specific climate data used. We recommend developing an accurate standard climate data set for simulation studies.DOI: 10.1111/j.1600-0889.2006.00208.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ball, J. T., Woodrow, I. E. and Berry, J. A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Progress in Photosynthesis Research (ed. J. Biggens). Martinus Nijhoff, Dordrecht, 221-224.
    • Bengtsson, L., Hodges, K. I. and Hagemann, S. 2004. Sensitivity of the ERA40 reanalysis to the observing system: determination of the global atmospheric circulation from reduced observations. Tellus 56A, 456-471.
    • Betts, A. K., Viterbo, P., Beljaars, A., Pan, H.-L., Hong, S.-Y. and coauthors. 1998. Evaluation of land-surface interaction in ECMWF and NCEP/NCAR reanalysis models over grassland (FIFE) and boreal forest (BOREAS). J. Geophys. Res. 103, 23 079-23 085.
    • Cao, M., Prince, S. D., Small, J. and Goetz, S. J. 2004. Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981-2000. Ecosystems 7, 233-242.
    • Cramer, W., Kicklighter, D. W., Bondeau, A., Moore, B. I., Churkina, G., and co-authors. and the participants of the Potsdam NPP Model Intercomparison. 1999. Comparing global NPP models of terrestrial net primary productivity (NPP): overview and key results. Global Change Biol. 5(suppl.1), 1-15.
    • DeFries, R. S. and Townshend, J. R. G. 1994. NDVI-derived land cover classifications at a global scale. Int. J. Rem. Sens. 15, 3567-3586.
    • Dirmeyer, P. A., Guo, Z. and Gao, X. 2004. Comparison, validation, and transferability of eight multiyear global soil wetness products. J. Hydrometeorol. 5, 1011-1033.
    • Field, C. B., Randerson, J. T. and Malmstrom, C. M. 1995. Global net primary production: combining ecology and remote sensing. Rem. Sens. Environ. 51, 74-88.
    • Fujita, D., Ishizawa, M., Maksyutov, S., Thornton, P. E., Saeki, T. and co-authors. 2003. Inter-annual variability of the atmospheric carbon dioxide concentrations as simulated with global terrestrial biosphere models and an atmospheric transport model. Tellus 55B, 530-546.
    • Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T. and co-authors. 2002. Advantages of diffuse radiation for terrestrial ecosystem productivity. J. Geophys. Res. 107, 4050, doi: 10.1029/2001JD001242.
    • Hazarika, M., Yasuoka, Y., Ito, A. and Dye, D. G. 2005. Estimation of net primary productivity by integrating remote sensing with an ecosystem model. Rem. Sens. Environ. 94, 298-310.
    • Hicke, J. A. 2005. NCEP and GISS solar radiation data sets available for ecosystem modeling: description, difference, and impacts on net primary production. Global Biogeochem. Cycles 19, GB2006, doi:10.1029/2004GB002391.
    • Huffman, G. J., Adler, R. F., Arkin, P., Chang, A., Ferraro, R. and co-authors. 1997. The Global Precipitation Climatology Project (GPCP) combined precipitation data set. Bull. Am. Meteorol. Soc. 78, 5-20.
    • Ichii, K., Hashimoto, H., Nemani, R. and White, M. 2005. Modeling the interannual variability and trends in gross and net primary productivity of tropical forests from 1982 to 1999. Global Planet. Change 48, 274- 286.
    • Ito, A. 2005. Climate-related uncertainties in projections of the 21st century terrestrial carbon budget: off-line model experiments using IPCC greenhouse gas scenarios and AOGCM climate projections. Clim. Dyn. 24, 435-448.
    • Ito, A. and Oikawa, T. 2000. A model analysis of the relationship between climate perturbations and carbon budget anomalies in global terrestrial ecosystems: 1970-1997. Climate Res. 15, 161-183.
    • Ito, A. and Oikawa, T. 2002. A simulation model of the carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecol. Model. 151, 147- 179.
    • Kaduk, J. and Heimann, M. 1994. The climate sensitivity of the Osnabru¨ck Biosphere Model on the ENSO time scale. Ecol. Model. 75, 239-256.
    • Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M. and co-authors. 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631-1643.
    • Keeling, C. D. and Whorf, T. P. 2004. Atmospheric CO2 concentrations - Mauna Loa Observatory, Hawaii, 1958-2003. NDP001, Oak Ridge National Laboratory, Oak Ridge, TN.
    • Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G. and coauthors. 2001. The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 82, 247- 267.
    • Kumar, M., and Monteith, J. L. 1981. Remote sensing of crop growth. In: Plants and Daylight Spectrum (ed.H. Smith). Academic Press, New York, 133-144.
    • Leemans, R. and Cramer, W. P. 1991. The IIASA database for mean monthly values of temperature, precipitation and cloudiness of a global terrestrial grid. RR-91-18, IIASA, Luxemburg.
    • Mitchell, T. D. and Jones, P. D. 2005. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693-712.
    • Monsi, M. and Saeki, T. 2005. On the factor light in plant communities and its importance for matter production. Ann. Bot. 95, 549-567.
    • Myneni, R. B., Nemani, R. and Running, S. W. 1997. Estimation of global leaf area index and absorbed PAR using radiative transfer models. IEEE Trans. Geosci. Rem. Sens. 35, 1380-1393.
    • Nemani, R. R., Keeling, C. D., Hashimoto, H., Jolly, W. M., Piper, S. C. and co-authors. 2003. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560-1563.
    • NOAA (National Oceanic and Atmospheric Administration). 1988. Data Announcement 88-MGG-02: Digital Relief of the Surface of the Earth. National Geophysical Data Center, Boulder, CO.
    • Pan, Y., McGuire, A. D., Kicklighter, D. W. and Melillo, J. M. 1996. The importance of climate and soils for estimates of net primary production: a sensitivity analysis with the terrestrial ecosystem model. Global Change Biol. 2, 5-23.
    • Parton, W. J., Scurlock, J. M. O., Ojima, D. S., Gilmanov, T. G., Scholes, R. J., and co-authors. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochem. Cycles 7, 785-809.
    • Potter, C. S., Klooster, S. and Brooks, V. 1999. Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems 2, 36-48.
    • Rossow, W. B. and Due n˜as, E. N. 2004. The International Satellite Cloud Climatology Project (ISCCP) Web site. Bull. Am. Meteorol. Soc. 85, 167-172.
    • Sasai, T., Ichii, K., Yamaguchi, Y. and Nemani, R. 2005. Simulating terrestrial carbon fluxes using the new biosphere model BEAMS: Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data. J. Geophys. Res. 110, G02014, doi: 10.1029/2005JG000045.
    • Saxton, K. E., Rawls, W. J., Romberger, J. S. and Papendick, R. I. 1986. Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50, 1031-1036.
    • Simmons, A. J. and Gibson, J. K. 2000. The ERA-40 Project Plan. ERA40 Project Report Series ECMWF, Reading, UK.
    • Simmons, A. J., Jones, P. D., da Costa Bechtold, V., Beljaars, A. C. M., Kallberg, P. W. and co-authors. 2004. Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res. 109, D24115, doi: 10.1029/2004JD005306.
    • Still, C. J., Berry, J. A., Collatz, G. J. and DeFries, R. S. 2003. Global distribution of C3 and C4 vegetation: carbon cycle implications. Global Biogeochem. Cycles 17, 1006, doi: 10.1029/2001GB001807.
    • Trenberth, K. E., Stepaniak, D. P. and Caron, J. M. 2002. Accuracy of atmospheric energy budgets from analyses. J. Clim. 15, 3343- 3360.
    • Uppala, S. M., Ka˚llberg, P. W., Simmons, A. J., Andrae, U., da Costa Bechtold, V. and co-authors. 2005. The ERA-40 re-analysis. Quart. J. R. Meteorol. Soc. 131, 2961-3012.
    • Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E.-D., Redmann, C., and co-authors. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861-865.
    • Wild, M., Gilgen, H., Roesch, A., Ohmura, A., Long, C. N. and co-authors.2005. From dimming to brightening: decadal changes in solar radiation at Earth's surface. Science 308, 847-850.
    • Xie, P. and Arkin, P. A. 1997. Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc. 78, 2539- 2558.
    • Zeng, N., Mariotti, A. and Wetzel, P. 2005. Terrestrial mechanisms of interannual CO2 variability. Global Biogeochem. Cycles 19, GB1016, doi: 10.1029/2004GB002273.
    • Zhao, M., Running, S. W. and Nemani, R. R. 2006. Sensitivity of moderate resolution Imaging Spectrometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalysis. J. Geophys. Res. 111, G01002, doi: 10.1029/2004JG000004.
    • Zheng, D., Prince, S. and Wright, R. 2003. Terrestrial net primary production estimates for 0.5◦ grid cells from field observations - a contribution to global biogeochemical modeling. Global Change Biol. 9, 46-64.
    • Zobler, L. 1986. A world soil file for global climate modeling. NASA Technical Memorandum 87802, NASA Goddard Institute for Space Studies, New York.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from