Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kawamura, Kenji; Nakazawa, Takakiyo; Aoki, Shuji; Sugawara, Satoshi; Fujii, Yoshiyuki; Watanabe, Okitsugu (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
A deep ice core drilled at Dome Fuji, East Antarctica was analyzed for the CO2 concentration using a wet extraction method in order to reconstruct its atmospheric variations over the past 320 kyr, which includes three full glacial–interglacial climatic cycles, with a mean time resolution of about 1.1 kyr. The CO2 concentration values derived for the past 65 kyr are very close to those obtained from other Antarctic ice cores using dry extraction methods, although the wet extraction method is generally thought to be inappropriate for the determination of the CO2 concentration. The comparison between the CO2 and Ca2+ concentrations deduced from the Dome Fuji core suggests that calcium carbonate emitted from lands was mostly neutralized in the atmosphere before reaching the central part of Antarctica, or that only a small part of calcium carbonate was involved in CO2 production during the wet extraction process. The CO2concentration for the past 320 kyr deduced from the Dome Fuji core varies between 190 and 300 ppmv, showing clear glacial–interglacial variations similar to the result of the Vostok ice core. However, for some periods, the concentration values of the Dome Fuji core are higher by up to 20 ppmv than those of the Vostok core. There is no clear indication that such differences are related to variations of chemical components of Ca2+, microparticle and acidity of the Dome Fuji core.DOI: 10.1034/j.1600-0889.2003.00050.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anklin, M., Barnola, J.-M., Schwander, J., Stauffer, B. and Raynaud, D. 1995. Process affecting the CO2 concentrations measured in Greenland ice. Tellus 47B, 461-470.
    • Anklin, M., Schwander, J., Stauffer, B., Tschumi, J., Fuchs, A., Barnola, J.-M. and Raynaud, D. 1997. CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core. J. Geophys. Res. 102, C12, 26 539-26 545.
    • Barnola, J.-M., Raynaud, D., Korotkevich, Y. S. and Lorius, C. 1987. Vostok ice core provides 160 000-year record of atmospheric CO2. Nature 329, 408-414.
    • Barnola, J.-M., Pimienta, P., Raynaud, D. and Korotkevich, Y. S. 1991. CO2-climate relationship as deduced from Vostok ice core: a re-examination based on new measurements and on a re-evaluation of the air dating. Tellus 43B, 83-90.
    • Brewer, P. G. 1978. Direct observation of the oceanic CO2 increase. Geophys. Res. Lett. 5, 997-1000.
    • Conway, T. J., Tans, P. P., Waterman, L. S., Thoning, K. W., Kitzis, D. R., Masarie, K. A. and Zhang, N. 1994. Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network. J. Geophys. Res. 99, D11, 22 831- 22 855.
    • Cuffey, K. M. and Vimeux, F. 2001. Covariation of carbon dioxide and temperature from the Vostok ice core after deuterium-excess correction. Nature 412, 523-527.
    • Davies, J. T. and Rideal, E. K. 1963. Interfacial Phenomena. Academic Press, London.
    • Delmas, R. J. 1993. A natural artefact in Greenland ice-core CO2 measurements. Tellus 45B, 391-396.
    • Dome-F Deep Coring Group. 1998. Deep ice-core drilling at Dome Fuji and glaciological studies in east Dronning Maud Land, Antarctica. Ann. Glaciol. 27, 333-337.
    • Etheridge, D. M., Steele, L. P., Langenfelds, R. L., Francey, R. J., Barnola, J. M. and Morgan, V. I. 1996. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, D2, 4115-4128.
    • Fischer, H., Wahlen, M., Smith, J., Mastroianni, D. and Deck, B. 1999. Ice Core Records of Atmospheric CO2 Around the Last Three Glacial Terminations. Science 283, 1712- 1714.
    • Fraser, P. J., Elliott, W. P. and Waterman, L. S. 1986. Atmospheric CO2 record from direct chemical measurements during the industrial era. In: The Changing Carbon Cycle: A Global Analysis (eds. J. R. Trabalka and D. E. Reichle) Springer-Verlag, New York.
    • Fujita, S., Azuma, N., Motoyama, H., Kameda, T., Narita, H., Fujii, Y. and Watanabe, O. 2002a. Electrical measurements on the 2503-m Dome F Antarctic ice core. Ann. Glaciol. (in press).
    • Fujita, S., Azuma, N., Motoyama, H., Kameda, T., Narita, H., Matoba, S., Igarashi, M., Kohno, M., Fujii, Y. and Watanabe, O. 2002b. Linear and nonlinear relations between the high-frequency-limit conductivity, AC-ECM signals and ECM signals of Dome F Antarctic ice core from laboratory experiment. Ann. Glaciol. (in press).
    • Ikeda, T., Fukazawa, H., Mae, S., Pepin, L., Duval, P., Champagnon, B., Lipenkov, V. Y. and Hondoh, T. 1999. Extreme fractionation of gases caused by formation of clathrate hydrates in Vostok Antarctic ice. Geophys. Res. Lett. 26, 91-94.
    • Ikeda-Fukazawa, T., Hondoh, T., Fukumura, T., Fukazawa, H. and Mae, S. 2001. Variation in N2/O2 ratio of occluded air in Dome Fuji Antarctic ice. J. Geophys. Res. 106, D16, 17 799-17 810.
    • Inderm u¨hle, A., Stocker, T. F., Joos, F., Fischer, H., Smith, H. J., Wahlen, M., Deck, B., Mastrolanni, D., Tschumi, J., Blunier, T., Meyer, R. and Stauffer, B. 1999. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica. Nature 398, 121- 126.
    • Inderm u¨hle, A., Monnin, E., Stauffer, B., Stocker, T. F. and Wahlen, M. 2000. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys. Res. Lett. 27, 735-738.
    • Keeling, C. D., Bacastow, R. B., Bainbridge, A. E., Ekdahl, C. A. J., Guenther, P. R., Waterman, L. S. and Chin, J. F. S. 1976a. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28, 538-551.
    • Keeling, C. D., Adams, J. A. J., Ekdahl, C. A. and Guenther, P. R. 1976b. Atmospheric carbon dioxide variations at the South Pole. Tellus 28, 552-564.
    • Keeling, C. D., Whorf, T. P., Wahlen, M. and van der Plicht, J. 1995. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666- 670.
    • Liss, P. S. 1988. Tracers of air-sea gas exchange. Philos. Trans. R. Soc. London, Ser. A 325, 93-103.
    • Machida, T., Nakazawa, T., Narita, H., Fujii, Y., Aoki, S. and Watanabe, O. 1996. Variations of the CO2, CH4 and N2O concentrations and δ13C of CO2 in the glacial period deduced from an Antarctic ice core, South Yamato. Proc. NIPR Symp. Polar Meteorol. Glaciol. 10, 55-65.
    • Martinerie, P., Lipenkov, V. Y., Raynaud, D., Chappellaz, J., Barkov, N. I. and Lorius, C. 1994. Air content paleo record in the Vostok ice core (Antarctica): a mixed record of climatic and glaciological parameters. J. Geophys. Res. 99, 10 565-10 576.
    • Monnin, E., Inderm u¨hle, A., Da¨llenbach, A., Fl u¨ckiger, J., Stauffer, B., Stocker, T. F., Raynaud, D. and Barnola, J.-M. 2001. Atmospheric CO2 concentrations over the Last Glacial termination. Science 291, 112-114.
    • Nakazawa, T., Machida, T., Etsumi, K., Tanaka, M., Fujii, Y., Aoki, S. and Watanabe, O. 1993a. Measurements of CO2 and CH4 concentrations in air in a polar ice core. J. Glaciol. 39, 209-215.
    • Nakazawa, T., Machida, T., Tanaka, M., Fujii, Y., Aoki, S. and Watanabe, O. 1993b. Differences of the atmospheric CH4 concentration between the Arctic and Antarctic regions in pre-industrial/pre-agricultural era. Geophys. Res. Lett. 20, 943-946.
    • Nakazawa, T., Morimoto, S., Aoki, S. and Tanaka, M. 1997. Temporal and spatial variations of the carbon isotopic ratio of atmospheric carbon dioxide in the western Pacific region. J. Geophys. Res. 102, 1271-1285.
    • Narita, H., Azuma, N. and Watanabe, O. 1999. Characteristics of air bubbles and hydrates in the Dome Fuji ice core, Antarctica. Ann. Glaciol. 29, 207-210.
    • Neftel, A., Moor, E., Oeschger, H. and Stauffer, B. 1985. Evidence from polar ice cores for the increase in atmospheric CO2 in the past two centuries. Nature 315, 45-47.
    • Petit, J. R., Jouzel, J., Raynaud, D., Barkov, N. I., Barnola, J.-M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V. M., Legrand, M., Lipenkov, V. Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E. and Stievenard, M. 1999. Climate and atmospheric history of the past 420 000 years from the Vostok ice core, Antarctica. Nature 399, 429-436.
    • Raynaud, D., Barnola, J.-M., Chappellaz, J., Blunier, T., Indermu¨hle, A. and Stauffer, B. 2000. The ice core record of greenhouse gases: a view in the context of the future changes. Q. Sci. Rev. 19, 9-17.
    • Satow, K., Watanabe, O., Shoji, H. and Motoyama, H. 1999. The relationship among accumulation rate, stable isotope ratio and surface temperature on the plateau of East Dronning Maud Land, Antarctica. Polar Meterol. Glaciol. 13, 43-52.
    • Schwander, J., Sowers, T., Barnola, J.-M., Blunier, R., Fuchs, A. and Malaize, B. 1997. Age scale of the air in the Summit ice: implication for glacial-interglacial temperature change. J. Geophys. Res. 102, 19 483-19 493.
    • Smith, H. J., Wahlen, M., Mastroianni, D. and Taylor, K. C. 1997a. The CO2 concentration of air trapped in GISP2 ice from the last glacial maximum-Holocene transition. Geophys. Res. Lett. 24, 1-4.
    • Smith, H. J., Wahlen, M., Mastroianni, D., Taylor, K. and Mayewski, P. 1997b. The CO2 concentration of air in Greenland Ice Sheet Project 2 ice formed during periods of rapid climate change. J. Geophys. Res. 102, 26 577- 26 582.
    • Smith, H. J., Fischer, H., Wahlen, M., Mastroianni, D. and Deck, B. 1999. Dual modes of the carbon cycle since the Last Glacial Maximum. Nature 400, 248-250.
    • Sowers, T., Bender, M., Raynaud, D. and Korotkevich, Y. S. 1992. δ15N of N2 in air trapped in polar ice: a tracer of gas transport in the firn and a possible constraint on ice age-gas age differences. J. Geophys. Res. 97, 15 683-15 697.
    • Stauffer, B. and Berner, W. 1978. CO2 in natural ice. J. Glaciol. 21, 291-300.
    • Stauffer, B., Blunier, T., Da¨llenbach, A., Indermu¨hle, A., Schwander, J., Stocker, T. F., Tschumi, J., Chappellaz, J., Raynaud, D., Hammer, C. U. and Clausen, H. B. 1998. Atmospheric CO2 concentration and millennial-scale climate change during the last glacial period. Nature 392, 59- 62.
    • Stauffer, B. and Tschumi, J. 2000. Reconstruction of past atmospheric CO2 concentrations by ice core analysis. In: Physics of Ice Core Records (ed. T. Hondoh) Hokkaido University Press, Sapporo, 217-241.
    • Stokes, G. M. and Barnard, J. C. 1986. Presentation of 20th century atmospheric carbon dioxide record in Smithsonian spectrographic plates. In: The Changing Carbon Cycle: A Global Analysis (eds. J. R. Trabalka and D. E. Reichle) Springer-Verlag, New York.
    • Uchida, T., Duval, P., Lipenkov, V. Y., Hondoh, T., Mae, S. and Shoji, H. 1994. Brittle zone and air-hydrate formation in polar ice sheets. Mem. Natl. Inst. Polar Res., Spec. Issue 49, 298-305.
    • Tschumi, J. and Stauffer, B. 2000. Reconstructing past atmospheric CO2 concentration based on ice-core analysis: open question due to in situ production of CO2 in ice. J. Glaciol. 46, 152, 45-53.
    • Watanabe, O., Fujii, Y., Kamiyama, K., Motoyama, H., Furukawa, T., Igarashi, M., Kohno, M., Kanamori, S., Kanamori, N., Ageta, Y., Nakawo, M., Tanaka, H., Satow, K., Shoji, H., Kawamura, K., Matoba, S. and Shimada, W. 1999. Basic analysis of Dome Fuji deep ice core part 1: stable oxygen and hydrogen isotope ratios, major chemical compositions and dust concentration. Polar Meterol. Glaciol. 13, 83-89.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from