LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jana, Tapan Kumar; Ray, Raghab; Chowdhury, Chumki; Majumder, Natasha; Dutta, Manab Kumar; Mukhopadhyay, Sandip Kumar (2013)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects: mangrove forest, Meteorology. Climatology, QC851-999, CO2 sensitivity, carbon stock, Atmospheric Sciences; Atmospheric Ecology, box model, India, carbon stock; CO2 sensitivity; box model; mangrove forest; India
Because of the difficulties in setting up arrangements in the intertidal zone for free-air carbon dioxide enrichment experimentation, the responses to increasing atmospheric carbon dioxide in mangrove forests are poorly studied. This study applied box model to overcome this limitation, and the relative changes in present level of reservoirs organic carbon contents in response to the future increase of atmospheric carbon dioxide were examined in the Avicennia-dominated mangrove forest at the land–ocean boundary of the northeast coast of the Bay of Bengal. The above- and below-ground biomass (AGB+BGB) and sediment held different carbon stock (53.20±2.87Mg C ha−1 (mega gram carbon per hectare) versus 18.52±2.77Mg C ha−1). Carbon uptake (0.348mg C m−2s−1) is more than offset by losses from plant emission (0.257mg C m−2s−1), and litter fall (13.52µg C m−2s−1) was more than soil CO2 and CH4 emission (8.36 and 1.39µg C m−2s−1, respectively). Across inventory plots, Sundarban mangrove forest carbon storage in above- and below-ground live trees and soil increased by 18.89 and 5.94Mg C ha−1 between June 2009 and December 2011. Box model well predicted the dynamics of above- and below-ground biomass and soil organic carbon, and increasing atmospheric carbon dioxide concentrations could be the cause of 1.1- and 1.57-fold increases in carbon storage in live biomass and soil, respectively, across Sundarban mangrove forest rather than recovery from past disturbances.Keywords: carbon stock, CO2 sensitivity, box model, mangrove forest, India(Published: 23 April 2013)Citation: Tellus B 2013, 65, 18981, http://dx.doi.org/10.3402/tellusb.v65i0.18981
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Adams, J. M. and Piovesan, G. 2005. Long series relationships between global inter annual CO2 increment and climate: evidence for stability and change in role of the tropical and boreal temperate zone. Chemosphere. 59, 1595 1612.
    • Alongi, D. M. 2009. The Energetics of Mangrove Forest. Springer, Dordrecht, Netherland, pp. 11, 24.
    • Barrett, K. 1998. Oceanic ammonia emissions in the Europe and their trans boundary fluxes. Atmos. Environ. 32, 381 391.
    • Bartlett, K. B., Bartlett, D. S., Harris, R. C. and Sebacher, D. I. 1987. Methane emission along a salt marsh salinity gradient. Biogeochemistry. 4, 183 202.
    • Berger, U., Rivera-Monroy, V. H., Doyle, T. W., DahdouhGuebas, F., Duke, N. C. and co-authors. 2008. Advances and limitations of individual based models to analyze and predict dynamics of mangrove forest: a review. Aquat. Bot. 89, 260 274.
    • Berner, R. A. 1994. GEOCARB II: a revised model of atmospheric CO2 over Phanerozoic time. Am. J. Sci. 294, 56 91.
    • Biswas, H., Mukhopadhyay, S. K., De, T. K., Sen, S. and Jana, T. K. 2004. Biogenic controls on the air water carbon dioxide exchange in the Sundarban mangrove environment, of Bay of Bengal, India. Limnol. Oceanogr. 49(1), 95 101.
    • Bouillon, S., Borges, A. V., Castafieda-Moya, E., Diele, K., Dittmar, T. and co-authors. 2008a. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cy. 22(GB2013), 12. DOI: 10.1029/2007GB003052.
    • Bouillon, S., Connolly, R. M. and Lee, S. Y. 2008b. Organic matter exchange and cycling in mangrove ecosystem; recent in sights from stable isotope studies. J. Sea. Res. 59, 44 58.
    • Cherry, J. A., McKee, K. L. and Grace, J. B. 2009. Elevated CO2 enhances biological contributions to elevation change in coastal wetlands by offsetting stressors associated with sea-level rise. J. Ecol. 97, 67 77.
    • Chmura, G. L., Anisfeld, S. C., Cahoon, D. R. and Lynch, J. C. 2003. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cy. 17(4), 1111. DOI: 10.1029/2002 GB001917.
    • Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A. and co-authors. 2001. Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob. Change. Biol. 7, 357 373.
    • Curtis, P. S. and Wang, X. Z. 1998. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia. 113, 299 313.
    • Dewar, R. C. 1991. An analytical model of carbon storage in the trees. Tree Physiol. 8, 239 258.
    • Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M. and co-authors. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature. Geoscience. 4, 93 297.
    • Enquist, B. J., Economo, E. P., Huxman, T. E., Allen, A. P., Ignace, D. D. and co-authors. 2003. Scaling metabolism from organisms to ecosystems. Nature. 423, 639 642.
    • Frost, B. W. and Franzen, N. C. 1992. Grazing and iron limitation in the control of phytoplankton stock and nutrient concentration: a chemostat analogue of the Pacific equatorial upwelling zone. Mar. Ecol. Prog. Ser. 83, 291 303.
    • Ganguly, D., Dey, M., Mandal, S. K., De, T. K. and Jana, T. K. 2008. Energy dynamics and its implication to biosphere atmosphere exchange of CO2, H2O and CH4 in a tropical mangrove forest canopy. Atmos. Environ. 42, 4172 4184.
    • Ganguly, D., Dey, M., Sen, S. and Jana, T. K. 2009. Biosphere Atmosphere exchange of NOx in the tropical mangrove forest. J. Geophys. Res. 114, G04014. DOI: 10.1029/2008JG000852.
    • Gattuso, P., Prakignoulle, M. and Wollast, R. 1998. Carbon and carbonate metabolism in coastal aquatic ecosystems. Annu. Rev. Ecol. Syst. 29, 405 434.
    • Ghosh, A., Dey, N., Bera, A., Tiwari, A., Sathyaniranjan, K. B. and co-authors. 2010. Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline. Syst. 6, 1.
    • Gilman, E. L., Ellison, J., Duke, N. C. and Field, C. 2008. Threats to mangroves from climate change and adaptation options. Aquat. Bot. 89, 237 250. DOI: 10.1016/j.aquabot.2007.12.009.
    • Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A. and coauthors. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 20, 154 159.
    • Golder, D. G. 1972. Relations among stability parameters in the surface layer. BLM. 3, 47 58.
    • Grace, J., Malli, Y., Higuchi, N. and Meir, P. 2001. Productivity of tropical forest. In: Terrestrial Global Productivity (eds. J. Roy, B. Samgier and H. A. Mooney). Academic press, San Diego, pp. 401 426.
    • Heidam, N. Z. 1982. Atmospheric aerosol factor models, mass and missing data. Atmos. Environ. 16, 1923 1931.
    • Hutchings, P. and Saenger, P. 1987. Ecology of Mangroves. University of Queensland Press, St Lucia, p. 388.
    • International Geosphere Biosphere Programme. 2009. Global Change. Stockholm, Sweden, Issue 74, p. 15.
    • Lewis, S. L., Lopwz- Gongalez, G., Sonke, B., Affum-Buffoe, K., Baker, R. T. and co-authors. 2009. Increasing carbon storage in intact African tropical forests. Nature. 457, 1003 1006.
    • Luo, Y., Medline, B., Hui, D., Ellsworth, D., Reynolds, J. and Katul, G. 2001. Gross primary productivity in the duke forest: modeling synthesis of the free-air CO2 enrichment experiment and eddy-covariance measurements. Ecol. Appl. 11, 239 252.
    • Luo, Y., White, L. W., Canadell, J. G., DeLucia, E. H., Ellsworth, D. S. and co-authors. 2003. Sustainability of terrestrial carbon sequestration: A case study in Duke Forest with inversion approach. Global Biogeochem. Cy. 17(1). DOI: 10.1029/ 2002GB001923.
    • Luo, Z., Jianxin Sun, O., Wang, E., Ren, H. and Xu, H. 2010. Modeling productivity in mangrove forests as impacted by effective soil water availability and its sensitivity to climate change using Biome-BGC. Ecosystems. 13, 949 965.
    • Mandal, S. K., Majumder, N., Chowdhury, C., Ganguly, D., Dey, M. and co-authors. 2011. Adsorption kinetic control of As (III & V) mobilization and sequestration by Mangrove sediment. Environ. Earth. Sci. 65, 2027 2036. DOI: 10.1007/s12665-011- 1183-9.
    • Masera, O. R., Garza-Caligaris, J. F., Kanninen, M., Karjalainen, T., Liski, J. and co-authors. 2003. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: the CO2FIX V.2 approach. Ecol. Model. 64, 177 199.
    • Mery, G. and Kanninen, M. 1999. Forest plantations and carbon sequestration in Chile. In: Forest Transitions and Carbon Fluxes, Global Scenarios and Policies (ed. M. Palo). World Development Studies 15. United Nations University, World Institute for Development Economy Research (UNU/WIDER), Helsinki, pp. 74 100.
    • Miller, P. C. 1972. Bioclimate, leaf temperature, and primary production in red mangrove canopies in south Florida. Ecology. 53, 22 45.
    • Mukhopadhyay, S. K., Biswas, H., De, T. K. and Jana, T. K. 2006. Fluxes of nutrients from the tropical River Hooghly at the land ocean boundary of Sundarbans, NE Coast of Bay of Bengal, India. J. Mar. Syst. 62, 9 21.
    • Mukhopadhyay, S. K., Biswas, H., De, T. K., Sen, B. K., Sen, S. and co-authors. 2002. Impact of Sundarban mangrove biosphere on the carbon dioxide and methane mixing ratios at the NE Coast of Bay of Bengal, India. Atmos. Environ. 36, 629 638.
    • Norby, R. J., Delucia, E. H., Gielen, B., Calfapietra, C., Giardina, C. P. and co-authors, A. 2005. Forest response to elevated CO2 is conserved across a broad range of productivity. Proc. Natl. Acad. Sci. USA. 102, 18052 18056.
    • Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W. and Ceulemans, R. 1999. Tree responses to rising CO2 in field experiments: implications for the future forest. Plant. Cell. Environ. 22, 683 714.
    • Phillips, O. L., Malhi, Y., Higuchi, N., Laurance, W. F., Nunez, P. V. and co-authors. 1998. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science. 282, 439 442.
    • Pruppacher, H. R. and Klett, J. D. 1997. Microphysics of Clouds and Precipitation. Kluwer Academic, Netherlands.
    • Ray, R., Ganguly, D., Chowdhury, C., Dey, M., Das, S. and co-authors. 2011. Carbon sequestration and annual increase of carbon stock in a mangrove forest. Atmos. Environ. 45, 5016 5024.
    • Rodhe, H. and Bjorkstrom, A. 1979. Some consequence of nonproportionality between fluxes and reservoir contents in natural systems. Tellus. 31, 269 278.
    • ScienceDaily. 2007. How Will Climate Change Affect India's Monsoon Season? 7 March. Online at: www.sciencedaily.com/ releases/2007/03/070308121808.htm.
    • Sherman, R. E., Fahey, T. J. and Martinez, P. 2003. Spatial patterns of biomass and above ground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems. 6, 384 398.
    • Thompson, S. L., Govindasamy, B., Mirin, A., Caldeira, K., Delire, C. and co-authors. 2004. Quantifying the effects of CO2- fertilized vegetation on future global climate and carbon dynamics. Geophys. Res. Lett. 31(23), Art. No. L23211.
    • Twilley, R. R., Chem, R. H. and Hargis, T. 1992. Carbon sinks in mangroves and their implications to carbon budget to tropical coastal ecosystem. Water, Air. Soil Pol. 54, 265 288.
    • Urquiza- Haas, T., Doiman, P. M. and Peres, C. A. 2007. Regional scale variation in forest structure and biomass in the Yucatan Peninsula, Mexico; Effects of forest disturbance. For. Ecol Manag. 247, 80 90.
    • Valentini, R., Matteucci, G., Dolman, A. J., Schulze, E. D., Rebmann, C. and co-authors. 2000. Respiration as the main determinant of carbon balance in European forests. Nature. 404, 861 865, DOI: 10.1038/35009084.
    • Van der Nat, F. J. W. A. and Middelburg, J. J. 2000. Methane emission from tidal freshwater marsh. Biogeochemistry. 49, 103 121.
    • Wesely, M. L. and Hicks, B. B. 1977. Some factors that affect the deposition rates of sulfur dioxide and similar gases on vegetation. JAPCA. 27, 1110 1116.
    • White, A., Cannell, M. G. R. and Friend, A. 2000. CO2 stabilization, climate change and terrestrial carbon sink. Glob. Change. Biol. 6, 817 833.
    • Wullschleger, S. D., Post, W. M. and King, A. W. 1995. On the potential for a CO2 fertilization effect in forests Estimates of the biotic growth factor based on 58 controlled-exposure studies. In: Biotic Feedbacks in the Global Climate System: Will Warming Feed the Warming? (eds. G. M. Woodwell and F. T. Mackenzie). Oxford University Press, USA, pp. 85 107.
    • Yong, Y., Baipeng, P., Guangcheng, C. and Yan, C. 2011. Processes of organic carbon in mangrove ecosystem. Acta. Ecol. Sin. 31, 169 173.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article