LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Myhre, Gunnar; Berglen, Tore F.; Myhre, Cathrine E.L.; Isaksen, Ivar S.A. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: respiratory system, complex mixtures
Stratospheric sulfate aerosols have a cooling effect on the Earth’s surface. Sulfur aerosols from large volcanic eruptions are often the dominant source, while non-volcanic background stratospheric sulfate aerosols are supposed to mainly originate from carbonyl sulfide (OCS). Several recent studies indicate, however, that this latter source is too small to account for the observed background stratospheric aerosol concentration. Based on model calculations we suggest that most of the lower stratospheric sulfate aerosol concentration is of anthropogenic origin. We estimate a global mean radiative forcing due to the anthropogenic influence on the stratospheric aerosol layer of −0.05 Wm−2. This represents a new climate forcing mechanism and emphasizes anthropogenic sulfur emission as an important cooling mechanism.DOI: 10.1111/j.1600-0889.2004.00106.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Arnold, F., Curtius, J., Spreng, S. and Deshler, T. 1998. Stratospheric aerosol sulfuric acid: first direct in situ measurements using a novel balloon-based mass spectrometer apparatus. J. Atmos. Chem. 30, 3- 10.
    • Aydin, M., De Bruyn, W. J. and Saltzam, E. S. 2002. Preindustrial atmospheric carbonyl sulfide (OCS) from an Antarctic ice core. Geophys. Res. Lett. 29, doi:10.1029/2002GL014796.
    • Berge, E. 1993. Coupling of wet scavenging of sulfur to clouds in a numerical weather prediction model. Tellus 45B, 1-22.
    • Berntsen, T. and Isaksen, I. S. A. 1997. A global 3-D chemical transport model for the troposphere, 1, Model description and CO and ozone results. J. Geophys. Res. 102, 21 239-21 280.
    • Bingen, C., Fussen, D. and Vanhellemont, F. 2004. Characterization of stratospheric aerosol distribution for volcanic and non volcanic aerosols observed through 16 years of SAGE II data (1984-2000). In: Volcanism and Earth's Atmosphere, AGU Geophysical Monograph 139 (eds A. Robock and C. Oppenheimer) American Geophysical Union, Washington, DC.
    • Bregman, A., Krol, M. C., Teyssedre, H., Norton, W. A., Iwi, A., et al. 2001. Chemistry-transport model comparison with ozone observations in the midlatitude lowermost stratosphere. J. Geophys. Res. 106, 17 479-17 496.
    • Brock, C. A., Hamill, P., Wilson, J. C., Jonsson, H. H. and Chan, K. R. 1995. Particle formation in the upper tropical troposphere: a source of nuclei for the stratospheric aerosol. Science 270, 1650-1653.
    • Carmichael, G. R., Streets, D. G., Calori, G., Amann, M., Jacobson, M. Z. et al. 2002. Changing trends in sulfur emissions in Asia: implications for acid deposition, air pollution, and climate. Environ. Sci. Technol. 36, 4707-4713.
    • Chin, M. and Davis, D. D. 1995. A reanalysis of carbonyl sulfide as a source of stratospheric background sulfur aerosol. J. Geophys. Res. 100, 8993-9005.
    • Crutzen, P. J. 1976. The possible importance of OCS for the sulfate layer of the stratosphere. Geophys. Res. Lett. 3, 73-76.
    • Danilin, M. Y., Fahey, D. W., Schumann, U., Prather, M. J., Penner, J. E., et al. 1998. Aviation fuel tracer simulations: model intercomparison and implications. Geophys. Res Lett. 25, 3947-3950.
    • Endresen, Ø., Sørga˚rd, E., Sundet, J. K., Dalsøren, S. B., Isaksen, I. S. A., et al. 2003. Emission from international sea transport and environmental impact. J. Geophys. Res. 108, 4560, doi:10.1029/2002JD002898.
    • Gauss, M., Isaksen, I. S. A., Wong, S. and Wang W.-C. 2003. The impact of H2O emissions from kerosene aircraft and cryoplanes on the atmosphere. J. Geophys. Res. 108, 4304, doi:10.1029/2002JD002623.
    • Hansen, J., Sato, M. and Ruedy, R. 1997. Radiative forcing and climate response. J. Geophys. Res. 102, 6831-6864.
    • Hofmann, D. J. 1990. Increase in the stratospheric background sulfuric acid aerosol mass in the past 10 years. Science 248, 996-1000.
    • Hofmann, D. J. 1991. Aircraft sulphur emissions. Nature 349, 659.
    • Hofmann, D. J. and Rosen, J. M. 1980. Stratospheric sulfuric acid layer: evidence for an anthropogenic component. Science 208, 1368-1370.
    • IPCC (Intergovernmental Panel on Climate Change) 2001. Climate Change 2001. The Scientific Basis (eds J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. et al.) Cambridge University Press, Cambridge.
    • Junge, C. E., Chagnon, C. W. and Manson, J. E. 1961. Stratospheric aerosols. J. Meteorol. 18, 81-108.
    • Kettle, A. J., Kuhn, U., von Hobe, M., Kesselmeier, J. and Andreae, M. O. 2002. Global budget of atmospheric carbonyl sulfide: temporal and spatial variations of the dominant sources and sinks. J. Geophys. Res. 107, 4658, doi:10.1029/2002JD002187.
    • Kjellstrøm, E. 1998. A three-dimensional global model study of carbonyl sulfide in the troposphere and the lower stratosphere. J. Atmos. Chem. 29, 151-177.
    • Lacis, A., Hansen, J. and Sato, M. 1992. Climate forcing by stratospheric aerosols. Geophys. Res. Lett. 19, 1607-1610.
    • Lefohn, A. S., Husar, J. D. and Husar, R. B. 1999. Estimating historical anthropogenic global sulfur emission patterns for the period 1850- 1990. Atmos. Environ. 33, 3435-3444.
    • Lelieveld, J., Berresheim, H., Borrmann, S., Crutzen, P. J., Dentener, F. J. et al. 2002. Global air pollution crossroads over the Mediterranean. Science 298, 794-799.
    • Leung, F. Y. T., Colussi, A. J., Hoffmann, M. R. and Toon, G. C. 2002. Isotopic fractionation of carbonyl sulfide in the atmosphere: implications for the source of background stratospheric sulfate aerosol. Geophys. Res. Lett. 29, 112, doi:10.1029/2001GL013955.
    • Martin, A. 1984. Estimated washout coefficients for sulfur-dioxide, nitric-oxide, nitrogen-dioxide and ozone. Atmos. Environ. 18, 1955- 1961.
    • Minnis, P., Harrison, E. F., Stowe, L. L., Gibson, G. G., Denn, F. M. et al. 1993. Radiative forcing by the eruption of Mt. Pinatubo deduced from NASA's Earth Radiation Budget Experiment data. Science 259, 1411-1415.
    • Myhre, C. E. L., Christensen, D. H., Nicolaisen, F. M. and Nielsen, C. J. 2003. Spectroscopic study of aqueous H2SO4 at different temperatures and compositions: variations in dissociation and optical properties. J. Phys. Chem. A doi:10.1021/jp026576n.
    • Myhre, G. and Stordal, F. 2001. Global sensitivity experiments of the radiative forcing due to mineral aerosols. J. Geophys. Res. 106, 18 193- 18 204.
    • Palmer, K. F. and Williams, D. 1975. Optical constants of sulfuric acid; application to the clouds of Venus. Appl. Opt. 14, 208-219.
    • Pitari, G., Mancini, E., Rizi, V. and Shindell, D. T. 2002. Impact of future climate and emission changes on stratospheric aerosols and ozone. J. Atmos. Sci. 59, 414-440.
    • Robock, A. 2000. Volcanic eruptions and climate. Rev. Geophys. 38, 191-219.
    • Schlesinger, M. E., Jiang, X. and Charlson, R. J. 1992. Implication of anthropogenic atmospheric sulphate for the sensitivity of the climate system. In: Climate Change and Energy Policy: Proceedings of the International Conference on Global Climate Change: its Mitigation through Improved Production and Use of Energy (eds Rosen, L. and Glasser, R.), American Institute of Physics, New York, 75- 108.
    • Sedlacek, W. A., Mroz, E. J., Lazrus, A. L. and Gandrud, B. W. 1983. A decade of stratospheric sulfate measurements compared with observations of volcanic eruptions. J. Geophys. Res. 88, 3741-3776.
    • Seinfeld, J. H. and Pandis, S. N. 1998. Atmospheric Chemistry and Physics, from Air Pollution to Climate Change. John Wiley, New York.
    • Soden, B. J., Wetherald, R. T., Stenchikov, G. L. and Robock, A. 2002. Global cooling after the eruption of Mount Pinatubo: a test of climate feedback by water vapor. Science 296, 727-730.
    • Solomon, S. 1999. Stratospheric ozone depletion: a review of concepts and history. Rev. Geophys. 37, 275-316.
    • Streets, D. G., Tsai, N. Y., Akimoto, H. and Oka, K. 2000a. Sulfur dioxide emissions in Asia in the period 1985-1997. Atmos. Envrion. 34, 4413-4424.
    • Streets, D. G., Guttikunda, S. K. and Carmichael, G. R. 2000b. The growing contribution of sulfur emissions from ships in Asian waters. Atmos. Envrion. 34, 4425-4439.
    • Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., Fu, Q. et al. 2003. An inventory of gaseous and primary aerosol emission in Asia in the year 2000. J. Geophys. Res. 108, 8809, doi:10.1029/2002JD003093.
    • Strevermayer, A. J., Petropavlovskikh, I. V., Rosen, J. M. and DeLuisi, J. J. 2000. Development of a global stratospheric aerosol climatology: optical properties and application for UV. J. Geophys. Res. 105, 22 763-22 776.
    • Thomason, L. W., Kent, G. S., Trepte, C. R. and Poole, L. R. 1997. A comparison of the stratospheric aerosol background periods of 1979 and 1989-1991. J. Geophys. Res. 102, 3611-3616.
    • Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B. and Hamill, P. 1980. Stratospheric aerosols and climate. Nature 283, 283-286.
    • Vestreng, V. and Støren, E. 2000. Analysis of UNEP/EMEP Emission Data. EMEP/MSC-W Note 1/00. Norweigian Meteorological Institute, Oslo, Norway.
    • Watts, S. F. 2000. The mass budgets of carbonyl sulfide, dimethyl, sulfide, carbon disulfide and hydrogen sulfide. Atmos. Environ. 34, 761- 779.
    • Weisenstein, D. K., Yue, G. K., Ko, M. K. W., Sze, N.-D., Rodriguez, J. M. et al. 1997. A two-dimensional model of sulfur species and aerosols. J. Geophys. Res. 102, 13 019-13 035.
    • Yue, G. K., Poole, L. R., Wang, P.-H. and Chiou, E. W. 1994. Stratospheric aerosol acidity, density, and refractive index deduced from SAGE II and NMC temperature data. J. Geophys. Res. 99, 3727-3738.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from