LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Loose, B.; Schlosser, P.; Perovich, P.; Ringelberg, D.; Ho, D. T.; Takahashi, T.; Richter-Menge, J.; Reynolds, C. M.; McGillis, W. R.; Tison, J.-L. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Subjects:
Gas diffusion through the porous microstructure of sea ice represents a pathway for ocean–atmosphere exchange and for transport of biogenic gases produced within sea ice. We report on the experimental determination of the bulk gas diffusion coefficients, D, for oxygen (O2) and sulphur hexafluoride (SF6) through columnar sea ice under constant ice thickness conditions for ice surface temperatures between −4 and −12 °C. Profiles of SF6 through the ice indicate decreasing gas concentration from the ice/water interface to the ice/air interface, with evidence for solubility partitioning between gas-filled and liquid-filled pore spaces. On average, DSF6 inline image was 1.3 × 10-4 cm2 s-1 (±40%) and DO2 was 3.9 × 10-5 cm2 s-1 (±41%). The preferential partitioning of SF6 to the gas phase, which is the dominant diffusion pathway produced the greater rate of SF6 diffusion. Comparing these estimates of D with an existing estimate of the air–sea gas transfer through leads indicates that ventilation of the mixed layer by diffusion through sea ice may be negligible, compared to air–sea gas exchange through fractures in the ice pack, even when the fraction of open water is less than 1%.DOI: 10.1111/j.1600-0889.2010.00506.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aachib, M., Mbonimpa, M. and Aubertin, M. 2004. Measurement and prediction of the oxygen diffusion coefficient in unsaturated media, with applications to soil covers. Water Air Soil Pollut. 156, 163-193.
    • Bari, S. A. and Hallett, J. 1974. Nucleation and growth of bubbles at an ice-water interface. J. Glaciol. 13, 489-520.
    • Bullister, J., Wisegarver, D. P. and Menzia, F. A. 2002. The solubility of sulfur hexafluoride in water and seawater. Deep-Sea Res. Part AOceanogr. Res. Papers 49, 175-187.
    • Cole, D. and Schapiro, L. H. 1998. Observations of brine drainage networks and microstructure of first-year sea ice. J. Geophys. Res. 103, 21739-21750.
    • Cox, G. F. N. and Weeks, W. F. 1983. Equations for determining the gas and brine volumes in sea-ice samples. J. Glaciol. 29, 306-316.
    • Cox, G. F. N. and Weeks, W. F. 1988. Numerical simulations of the profile properties of undeformed first-year sea ice during the growth season. J. Geophys. Res. 93, 12449-12460.
    • Craig, H. and Hayward, T. 1987. Oxygen supersaturation in the ocean: biological versus physical contributions. Science 235, 199-202.
    • Delille, B., Jourdain, B., Borges, A. V., Tison, J.-L. and Delille, D. 2007. Biogas (CO2, O2, dimethylsulfide) dynamics in spring Antarctic fast ice. Limnol. Oceanogr. 52, 1367-1379.
    • Frankenstein, G. E. and Garner, R. 1967. Equations for determining the brine volume of sea ice from −0.5 ◦C to −22.9 ◦C. J. Glaciol. 6, 943-944.
    • Golden, K. M., Ackley, S. F. and Lytle, V. I. 1998. The percolation phase transition in sea ice. Science 282, 2238-2241.
    • Golden, K. M., Heaton, A. L., Eicken, H. and Lytle, V. I. 2006. Void bounds for fluid transport in sea ice. Mech. Mater. 38, 801-817.
    • Golden, K. M., Eicken, H., Heaton, A. L., Miner, J., Pringle, D. J. and coauthors. 2007. Thermal evolution of permeability and microstructure in sea ice. Geophys. Res. Lett. 34, doi: 10.1029/2007GL030447.
    • Gosink, T. A., Pearson, J. G. and Kelly, J. J. 1976. Gas movement through sea-ice. Nature 263, 41-42.
    • Gow, A. J., Meese, D. A., Perovich, D. K. and Tucker III, W. B. 1990. The anatomy of a freezing lead. J. Geophys. Res. 95, 18221-18232.
    • Helmke, E. and Horst, W. 1995. Bacteria in sea ice and underlying water of the eastern Weddell Sea in midwinter. Marine Ecol. Progress Ser. 117, 269-287.
    • Hemminsen, E. 1959. Permeation of gases through ice. Tellus 11, 355-359.
    • Ho, D. T., Bliven, L., Wanninkhof, R. and Schlosser, P. 1997. The effect of rain on air-water gas exchange. Tellus 49B, 149-158.
    • Kawamoto, K., Moldrup, P., Schjonning, P., Iversen, B. V., Rolston, D. E. and co-authors. 2006. Gas transport parameters in the vadose zone: gas diffusivity in field and lysimeter soil Profiles. Vadose Zone J. 5, 1194-1204.
    • King, D. B. and Saltzman, E. S. 1995. Measurement of the diffusion coefficient of sulfur hexafluoride in water. J. Geophys. Res. 100, 7083-7088.
    • Kottmeier, S. T. and Sullivan, C. W. 1990. Bacterial biomass and production in pack ice of Antarctic marginal ice edge zones. Deep-Sea Res. 37, 1311-1330.
    • Light, B., Maykut, G. A. and Grenfell, T. C. 2003. Effects of temperature on the microstructure of first-year Arctic sea ice. J. Geophys. Res. 108, doi: 10.1029/2001JC000887.
    • Loose, B., McGillis, W. R., Schlosser, P., Perovich, D. and Takahashi, T. 2009. The effects of freezing, growth and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett. 36, doi: 10.1029/2008GL036318.
    • Moldrup, P., Olesen, T., Yoshikawa, S., Komatsu, T. and Rolston, D. E. 2004. Three-porosity model for predicting the gas diffusion coefficient in undisturbed soil. Soil Sci. Soc. Am. J. 68, 750-759.
    • Morita, P. J. 1975. Psychrophylic bacteria. Bacteriol. Rev. 39, 144-167.
    • Notz, D. and Worster, M. G. 2009. Desalination processes of sea ice revisited. J. Geophys. Res. 114, doi: 10.1029/2008JC004885.
    • O'Brien, R. N. and Hyslop, W. F. 1977. A laser interferometric study of the diffusion of O2, N2, H2 and Ar into water. Can. J. Chem. 55, 1415-1421.
    • Papadimitriou, S., Kennedy, H., Kattner, G., Dieckmann, G. S. and Thomas, D. N. 2003. Experimental evidence for carbonate precipitation and CO2 degassing during ice formation. Geochimica et Cosmochimica Acta 68, 1749-1761.
    • Perovich, D. K. and Gow, A., J. 1996. A quantitative description of sea ice inclusions. J. Geophys. Res. 101, 18327-18343.
    • Richardson, C. 1976. Phase relationships in sea ice as a function of temperature. J. Glaciol. 17, 507-519.
    • Stephens, B. B. and Keeling, R. F. 2000. The influence of Antarctic sea ice on glacial-interglacial CO2 variations. Nature 404, 171-174.
    • Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A. and co-authors. 2009. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Res. Part II 56, 554-577.
    • Tick, G. R., McColl, C. M., Yolcubal, I. and Brusseau, M. L. 2007. Gasphase diffusive tracer test for the in-situ measurement of tortuosity in the vadose zone. Water Air Soil Pollut. 184, 355-362.
    • Tison, J.-L., Haas, C., Gowing, M. M., Sleewaegen, S. and Bernard, A. 2002. Tank study of physico-chemical controls on gas content and composition during growth of young sea ice. J. Glaciol. 48, 177-191.
    • Toggweiler, J. R. 1999. Variation of atmospheric CO2 by ventilation of the ocean's deepest water. Paleoceanography 14, 572-588.
    • Vogel, H. J. 1997. Morphological determination of pore connectivity as a function of pore size using serial sections. Eur. J. Soil Sci. 48, 365-377.
    • Wanninkhof, R., Ledwell, J. R., Broecker, W. S. and Hamilton, M. 1987. Gas exchange on Mono Lake and Crowley Lake, California. J. Geophys. Res. 92, 14567-14580.
    • Wanninkhof, R., Ledwell, J. R. and Watson, A. J. 1991. Analysis of sulfur hexafluoride in seawater. J. Geophys. Res. 96, 8733-8740.
    • Webb, S. W. and Pruess, K. 2003. The use of Fick's Law for modeling trace gas diffusion in porous media. Transport Porous Media 51, 327-341.
    • Weeks, E. P., Earp, D., E. and Thompson, G. M. 1982. Use of atmospheric fluorocarbons F-11 and F-12 to determine the diffusion parameters of the unsaturated zone in the Southern High Plains of Texas. Water Resources Res. 18, 1365-1378.
    • Weiss, R. F. 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res. 17, 721-735.
    • Werner, D. and Hhener, P. 2003. In situ method to measure effective and sorption-affected gas-phase diffusion coefficients in soils. Environ. Sci. Technol. 37, 2502-2510.
    • Zalca, J. M., Reyes, S. C. and Iglesia, E. 2003. Monte-Carlo simulations of surface and gas phase diffusion in complex porous structures. Chem. Eng. Sci. 58, 4605-4617.
    • Zemmelink, H. J., Dacey, J. W. H., Houghton, L., Hintsa, E. J. and Liss, P. S. 2008. Dimethylsulfide emissions over the multiyear ice of the western Weddell Sea. Geophys. Res. Lett. 35, doi: 10.1029/2007GL031847.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    40
    40%
  • No similar publications.

Share - Bookmark

Funded by projects

  • NSF | Collaborative Research: AnS...

Cite this article

Collected from