Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Devasthale, Abhay; Tjernström, Michael; Omar, Ali H. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Influx of aerosols from the mid-latitudes has a wide range of impacts on the Arctic atmosphere. In this study, the capability of the CALIPSO-CALIOP instrument to provide accurate observations of aerosol layers is exploited to characterize their vertical distribution, probability density functions (PDFs) of aerosol layer thickness, base and top heights, and optical depths over the Arctic for the 4-yr period from June 2006 to May 2010. It is shown that the bulk of aerosols, from about 65% in winter to 45% in summer, are confined below the lowermost kilometer of the troposphere. In the middle troposphere (3–5 km), spring and autumn seasons show slightly higher aerosol amounts compared to other two seasons. The relative vertical distribution of aerosols shows that clean continental aerosol is the largest contributor in all seasons except in summer, when layers of polluted continental aerosols are almost as large. In winter and spring, polluted continental aerosols are the second largest contributor to the total number of observed aerosol layers, whereas clean marine aerosol is the second largest contributor in summer and autumn. The PDFs of the geometrical thickness of the observed aerosol layers peak about 400–700 m. Polluted continental and smoke aerosols, which are associated with the intrusions from mid-latitudes, have much broader distributions of optical and geometrical thicknesses, suggesting that they appear more often optically thicker and higher up in the troposphere.DOI: 10.1111/j.1600-0889.2010.00517.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Blanchet, J.-P. and Girard, E. 1994. Arctic greenhouse cooling. Nature 371, 383.
    • Devasthale, A., Wille´n, U., Karlsson, K.-G. and Jones, C. G. 2010. Quantifying the clear-sky temperature inversion frequency and strength over the Arctic Ocean during summer and winter seasons from AIRS profiles. Atmos. Phys. Chem. 10, 5565-5572.
    • Devasthale, A., Tjernstro¨m, M., Karlsson, K.-G., Thomas, M. A., Jones, C. and co-authors. 2011. The vertical distribution of tropospheric thin features over the Arctic analysed from CALIPSO observations. Part I - Optically thin clouds. Tellus 63B, this issue.
    • Eck, T. F., Holben, B. N., Reid, J. S., Sinyuk, A., Hyer, E. J. and coauthors. 2009. Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J. Geophys. Res. 114, D11201, doi:10.1029/2008JD010870.
    • Eckhardt, S., Stohl, A., Beirle, S., Spichtinger, N., James, P. and co-authors. 2003. The North Atlantic Oscillation controls air pollution transport to the Arctic. Atmos. Chem. Phys. 3, 1769- 1778.
    • Eleftheriadis, K., Vratolis, S. and Nyeki, S. 2009. Aerosol black carbon in the European Arctic: measurements at Zeppelin station, NyÅlesund, Svalbard from 1998-2007. Geophys. Res. Lett. 36, L02809, doi:10.1029/2008GL035741.
    • Engvall, A.-C., Krejci, R., Stro¨m, J., Treffeisen, R., Scheele, R. and co-authors. 2008. Changes in aerosol properties during springsummer period in the Arctic troposphere. Atmos. Chem. Phys. 8, 445-462.
    • Garrett, T. J., Radke, L. F. and Hobbs, P. V. 2002. Aerosol effects on the cloud emissivity and surface longwave heating in the Arctic. J. Atmos. Sci. 59, 769-778.
    • Garrett, T. J. and Zhao, C. 2006. Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787-789, doi:10.1038/nature04636.
    • Generoso, S., Bey, I., Attie´, J.-L. and Bre´on, F.-M. 2007. A satellite- and model-based assessment of the 2003 Russian fires: impact on the Arctic region. J. Geophys. Res. 112, D15302, doi:10.1029/2006JD008344.
    • Hegg, D. A., Warren, S. G., Grenfell, T. C., Doherty, S. J., Larson, T. V. and co-authors. 2009. Source attribution of black carbon in Arctic Snow. Environ. Sci. Technol. 43, 4016-4021.
    • Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., and co-authors. 2002. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. 107(10), 4097, doi:10.1029/2001JD000536.
    • Koch, D. and Hansen, J. 2005. Distant origins of Arctic black carbon: a Goddard Institute for Space Studies ModelE experiment. J. Geophys. Res. 110, D04204, doi:10.1029/2004JD005296.
    • Koch, D., Schmidt, G. A., Menon, S., Del Genio, A., Ruedy, R., and co-authors. 2009. Distinguishing aerosol impacts on climate over the past century. J. Clim. 22(10), 2659-2677.
    • Law, K. S. and Stohl, A. 2007. Arctic air pollution-origins and impacts. Science, 315(5818), 1537-1540.
    • Leck, C. and Persson, C. 1996. Seasonal and short-term variability in dimethyl sulfide, sulfur dioxide and biogenic sulfur and sea salt aerosol particles in the arctic marine boundary layer, during summer and autumn. Tellus 48B, 272-299.
    • Liu, Z., Vaughan, M. A., Winker, D. M., Kittaka, C., Kuehn, R. E., and co-authors. 2009. The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance. J. Atmos. Oceanic Technol. 26, 1198-1213, doi:10.1175/2009JTECHA1229.1.
    • Lubin, D. and Vogelmann, A. M. 2006. A climatologically significant aerosol longwave indirect effect in the Arctic. Nature 439(26), 453-456, doi:10.1038/nature04449.
    • Mauritsen, T., Sedlar, J., Tjernstro¨m, M., Leck, C., Martin, M., and coauthors. 2010. Aerosols indirectly warm the Arctic. Atmos. Chem. Phys. Discuss. 10, 16775-16796.
    • Omar, A. H., Won, J.-G., Winker, D. M., Yoon, S.-C., Dubovik, O., and co-authors. 2005. Development of global aerosol models using cluster analysis of Aerosol Robotic Network (AERONET) measurements. J. Geophys. Res. 110(D10S14), doi:10.1029/2004JD004874.
    • Omar, A., Winker, D., Kittaka, C., Vaughan, M., Liu, Z., and co-authors. 2009. The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J. Atmos. Oceanic Technol. 26, 1994-2014, doi:10.1175/2009-JTECHA1231.1.
    • O'Neill, N. T., Pancrati, O., Baibakov, K., Eloranta, E., Batchelor, R. L., and co-authors. 2008. Occurrence of weak, submicron, tropospheric aerosol events at high Arctic latitudes. Geophys. Res. Lett. 35, L14814, doi:10.1029/2008GL033733.
    • Prenni, A. J., Harrington, J. Y., Tjernstro¨m, M., DeMott, P. J., Avramov, A. and co-authors. 2007. Can ice-nucleating aerosols affect arctic seasonal climate? Bull. Amer. Meteor. Soc. 88(4), 541-550.
    • Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., and co-authors. 2009. Aerosol indirect effects-general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys. 9, 8697-8717.
    • Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., and co-authors. 2007. Arctic haze: current trends and knowledge gaps. Tellus 59B, 99-114.
    • Sharma, S., Andrews, E., Barrie, L. A., Ogren, J. A. and Lavou'e, D. 2006. Variations and sources of the equivalent black carbon in the high Arctic revealed by long-term observations at Alert and Barrow: 1989-2003. J. Geophys. Res. 111, D14208, doi:10.1029/2005JD006581.
    • Shindell, D. T., Chin, M., Dentener, F., Doherty, R. M., Faluvegi, G., and co-authors. 2008. A multi-model assessment of pollution transport to the Arctic. Atmos. Chem. Phys. 8, 5353-5372.
    • Shindell, D. and Faluvegi, G. 2009. Climate response to regional radiative forcing during the twentieth century. Nature Geosci. 2, 294-300, doi:10.1038/ngeo473.
    • Stohl, A. 2006. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. 111, D11306, doi:10.1029/2005JD006888.
    • Stone, R. S., Anderson, G. P., Shettle, E. P., Andrews, E., Loukachine, K., and co-authors. 2008. Radiative impact of boreal smoke in the Arctic: observed and modeled. J. Geophys. Res., 113, D14S16, doi:10.1029/2007JD009657.
    • Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., and co-authors. 2007. Aerosols in polar regions: a historical overview based on optical depth and in situ observations. J. Geophys. Res. 112, D16205, doi:10.1029/2007JD008432.
    • Treffeisen, R., Tunved, P., Stro¨m, J., Herber, A., Bareiss, J., and coauthors. 2007. Arctic smoke - aerosol characteristics during a record smoke event in the European Arctic and its radiative impact. Atmos. Chem. Phys. 7, 3035-3053.
    • Tjernstro¨m, M. and Graversen, R. G. 2009. The vertical structure of the lower Arctic troposphere analysed from observations and ERA-40 reanalysis. Quart. J. Roy. Met. Soc. 135, 431-443, doi:10.1002/qj.380.
    • Vaughan, M., Powell, K., Kuehn, R., Young, S., Winker, D., and coauthors. 2009. Fully automated detection of cloud and aerosol layers in the CALIPSO Lidar measurements. J. Atmos. Oceanic Technol., 26, 2034-2050, doi:10.1175/2009JTECHA1228.1.
    • Warneke, C., Froyd, K. D., Brioude, J., Bahreini, R., Brock, C. A., and coauthors. 2010. An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophys. Res. Lett. 37, L01801, doi:10.1029/2009GL041816.
    • Winker, D. M., Vaughan, M. A., Omar, A. H., Hu, Y., Powell, K. A., and co-authors. 2009. Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol. 26, 2310-2323, doi:10.1175/2009JTECHA1281.1.
    • Young, S. A. and Vaughan, M. A. 2009. The retrieval of profiles of particulate extinction from Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: algorithm description. J. Atmos. Oceanic Technol. 26, 1105-1119, doi:10.1175/2008 JTECHA1221.1.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from