Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ekman, Annica M.L. (2002)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
A high-resolution, regional climate model (RCA2) is employed to evaluate direct and indirect radiative forcing patterns due to man-made sulfate aerosols over Europe and to examine the sensitivity of the results to the choice of model resolution. A simulation encompassing the whole year of 1993 is performed. The model includes an explicit parameterization of the atmospheric sulfur cycle where predicted cloud and precipitation parameters are utilized at each time step. The overall pattern of the monthly mean direct climate effect simulated by the regional climate model is similar to that obtained using global climate models. Calculations over 0.4 and 4.0° spatial resolution indicate that, for the climatic conditions simulated by the RCA2, correlations between small-scale variations of relative humidity and aerosol loading do not contribute substantially to the magnitude of the monthly mean optical thickness.For the monthly mean indirect climate effect, the finer grid spacing in the RCA2 results in a pronounced spatial variability, not visible in global climate model simulations. An interesting question is whether this variability affects the estimated magnitude of the indirect climate effect. Calculations of the effective droplet radius (re) for 0.4 and 4° spatial resolution indicate a minor importance over the RCA2 model domain (the difference in re is less than 7%). The model generally underestimates the sulfate concentration within the boundary layer, whereas the magnitude of the simulated CDNC and re agrees well with aircraft measurements. Despite an underestimate of the absolute magnitude, the regional pattern of the modeled re resembles that observed by satellite. A number of sensitivity simulations demonstrate that the magnitude of the indirect radiative forcing is highly uncertain. In order to reduce the uncertainty, different parameterizations of the indirect effect should be evaluated in more detail versus measurements of, e.g., aerosol concentration and properties, CDNC, and re at various locations.DOI: 10.1034/j.1600-0889.2002.00282.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Albrecht, B. A. 1989. Aerosols, cloud microphysics, and fractional cloudiness. Science 245, 1227-1230.
    • Barth, M. C., Rasch, P. J., Kiehl, J. T., Benkovitz, C. M. and Schwartz, S. E. 2000. Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: description, evaluation, features and sensitivity to aqueous chemistry. J. Geophys. Res. 105, 1387-1415.
    • Berge E. 1990. A regional numerical sulfur dispersion model using a meteorological model with explicit treatment of clouds. T ellus 42B, 389-407.
    • Berge, E. 1993. Coupling of wet scavenging of sulphur to clouds in a numerical weather prediction model. T ellus 45B, 1-22.
    • Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P. A., Logan, J. A. and Graedel, T. E. 1996. Global gridded inventories of anthropogenic emissions of sulfur and nitrogen. J. Geophys. Res. 101, 29,239-29,253.
    • Bott, A. 1989a. A positive definite advection scheme obtained by nonlinear renormalization of the advected fluxes. Mon. Wea. Rev. 117, 1006-1015.
    • Bott, A. 1989b. Reply. Mon. Wea. Rev. 117, 2633-2636.
    • Boucher, O. and Lohmann, U. 1995. The sulfate-CCNcloud albedo effect: a sensitivity study with two general-circulation models. T ellus 47B, 281-300.
    • Charlson, R. J., Langner, J., Rodhe, H., Leovy, C. B. and Warren, S. G. 1991. Perturbation of the northern hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. T ellus 4B3, 152-163.
    • Charlson, R. J., Anderson, T. L. and Rodhe, H. 1999. Direct climate forcing by anthropogenic aerosols: Quantifying the link between atmospheric sulfate and radiation. Contr. Atmos. Phys. 72, 79-94.
    • Chin, M., Savoie, D. L., Huebert, B. J., Bandy, A. R., Thornton, D. C., Bates, T. S., Quinn, P. K., Saltzman, E. S. and De Bruyn, W. J. 2000. Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res. 105, 24,689-24,712.
    • Choularton, T. W., Bower, K. N., Beswick, K. M., Parkin, M. and Kaye, A. 1998. A study of the effects of cloud processing of aerosol on the microphysics of cloud. Q. J. R. Meteorol. Soc. 124, 1377-1389.
    • Chuang, C. C., Penner, J. E., Taylor, K. E., Grossman, A. S. and Walton, J. J. 1997. An assessment of the radiative effects of anthropogenic sulfate. J. Geophys. Res. 102, 3761-3778.
    • Covert, D. S., Wiedensohler, A., Aalto, P., Heintzenberg, J., McMurry, P. H. and Leck, C. 1996. Aerosol number size distributions from 3 to 500 nm diameter in the Arctic marine boundary layer during summer and autumn. T ellus 48B, 197-212.
    • Curry, J. A. 1986. Interactions among turbulence, radiation and microphysics in Arctic stratus clouds. J. Atmos. Sci. 43, 90-106.
    • Cuxart, J., Bougeault, P. and Redelsperger, J.-L. 2000. A turbulence scheme allowing for mesoscale and largeeddy simulations. Q. J. R. Meteorol. Soc. 126, 1-30.
    • Eerola K., Salmond D., Gustafsson N., Garcia-Moya J.-A., L o¨nnberg P. and Ja¨rvenoja S. 1997. A parallel version of the HIRLAM forecast model: Strategy and results. In: Making its mark (eds. Hoffman, G.-R. and Kreitz N.), Proceedings of the seventh ECMWF Workshop of the use of Parallel Processors in Meteorology. Reading, UK, November, 1996, 134-143.
    • Ekman, A. 2000., Implementation of an atmospheric sulfur scheme in the HIRLAM regional weather forecast model. Report CM-96, International Meteorological Institute in Stockholm, Department of Meteorology, Stockholm University, S-10691 Stockholm, Sweden.
    • Feichter, J. and Lohmann, U. 1999. Can a relaxation technique be used to validate clouds and sulphur species in a GCM? Q. J. R. Meteorol. Soc. 125, 1277-1294.
    • Feichter, J., Lohmann, U. and Schult, I. 1997. The atmospheric sulfur cycle in ECHAM-4 and its impact on the shortwave radiation. Clim. Dyn. 13, 235-246.
    • Glantz, P. and Noone, K. J. 2000. A physically based algorithm for estimating the relationship between aerosol mass and cloud droplet number. T ellus 52B, 1216-1231.
    • Hass, H., Berge, E., Ackermann, I., Jakobs, H. J., Memmesheimer, M. and J.-P.Tuovinen, A diagnostic comparison of EMEP and EURAD. Model results for a wet deposition episode in July 1990. EMEP/MSC-W Report 4/96, The Norwegian Meteorological Institute, Oslo, Norway, 1996.
    • Haywood, J. M. and Boucher, O. 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: a review. Rev. Geophys. 38, 513-543.
    • Haywood, J. M., Ramaswamy, V. and Donner, L. J. 1997. A limited-area-model case study of the effects of subgrid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol. Geophys. Res. L ett. 24, 143-146.
    • Herman, G. F. and Curry, J. A. 1984. Observational and theoretical studies of solar radiation in Arctic stratus clouds. J. Appl. Meteorol. 23, 5-24.
    • Hegg, D. A. 1994. Cloud condensation nucleus-sulfate mass relationship and cloud albedo. J. Geophys. Res. 99, 25,903-25,907.
    • Hjellbrekke, A. G. and Hanssen, J. E. 1998. Data report 1996, Part 2. Monthly and seasonal summaries. NIL U/ CCC-report 2/98, pp 229. The Norwegian Institute for Air Research, Lillestrøm, Norway.
    • Intergovernmental Panel on Climate Change (IPCC), 1996. Climate change, 1995: the science of climate change (ed. J. T. Houghton et al.), Cambridge University Press, New York, 572 pp.
    • Jennings, S. G., Geever, M., McGovern, F. M., Francis, J., Spain, T. G. and Donaghy, T. 1997. Microphysical and physio-chemical characterization of atmospheric and continental aerosol at Mace Head. Atmos. Environ. 31, 2795-2808.
    • Jones, A. and Slingo, A. 1996. Predicting cloud-droplet effective radius and indirect sulphate aerosol forcing using a general circulation model. Q. J. R. Meteorol. Soc. 122, 1573-1595.
    • Jones, A., Roberts, D. L. and Slingo, A. 1994. A climate model study of indirect radiative forcing by anthropogenic sulphate aerosols. Nature 370, 450-453.
    • Kain, J. S. and Fritsch, J. M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J. Atmos. Sci. 47, 2784-2802.
    • Ka¨lle´n, E. (ed.), 1996. HIRL AM documentation manual - System 2.5. Available from the Swedish Meteorological and Hydrological Institute, SE-60176 Norrk o¨ping, Sweden, 240 pp.
    • Kawamoto, K., Nakajima, T. and Nakajima, T. 2001. A global determination of cloud microphysics with AVHRR remote sensing. J. Clim. 14, 2054-2068.
    • Kiehl, J. T., Hack, J. J., Bonan, G. B., Boville, B. A., Williamson, D. L. and Rasch, P. J. 1998. The National Center for Atmospheric Research Community Climate Model: CCM3. J. Clim. 11 1131-1150.
    • Kiehl J. T., Schneider, T. L., Rasch, P. J. and Barth, M. C. 2000. Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research. Community Climate Model, Version 3. J. Geophys. Res. 105, 1441-1457.
    • Koch, D., Jacob, D., Tegen, I., Rind, D. and Chin, M. 1999. Tropospheric sulfur simulation and sulfate direct radiative forcing in the Goddard Institute for Space Studies general circulation model. J. Geophys. Res. 104, 23,799-23,822.
    • Kotchenruther, R. A., Hobbs P. V. and Hegg, D. A. 1999. Humidification factors for atmospheric aerosols off the mid-Atlantic coast of the United States. J. Geophys. Res. 104, 2239-2251.
    • Langmann, B., Herzog, M. and Graf, H.-F. 1998. Radiative forcing of climate by sulfate aerosols as determined by a regional circulation chemistry transport model. Atmos. Environ. 32, 2757-2768.
    • Lohmann, U. and Feichter, J. 1997. Impact of sulfate aerosols on albedo and lifetime of clouds: a sensitivity study with the ECHAM4 GCM. J. Geophys. Res. 102, 13,685-13,700.
    • Lohmann, U., Feichter, J., Chuang, C. C. and Penner, J. E. 1999a. Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res. 104, 9169-9198.
    • Lohmann, U., Feichter, J., Chuang, C. C. and Penner, J. E. 1999b. Correction to 'Prediction of the number of cloud droplets in the ECHAM GCM. J. Geophys. Res. 104, 24,557-24,563.
    • Mahowald, N. M, Rasch, P. J., Eaton, B. E., Whittlestone, S and Prinn, R. G. 1997. Transport of 222radon to the remote troposphere using the Model of Atmospheric Transport and Chemistry and assimilated winds from ECMWF and the National Center for Environmental Prediction/NCAR. J. Geophys. Res. 102, 28,139-28,151.
    • Martin, G. M., Johnson, D. W. and Spice, A. 1994. The measurement and parameterization of effective radius of droplets in warm stratocumulus clouds. J. Atmos. Sci. 51, 1823-1842.
    • Mylona, S. 1999. EMEP emission data. Status Report 1999. EMEP/MSC-W Note 1-99, Norwegian Meteorological Institute, Oslo, Norway.
    • New, M., Hulme, M. and P. Jones. Representing twentieth-century space-time climate variability, Part I. Development of a 1961-90 mean monthly terrestrial climatology. J. Clim. 12, 829-856.
    • Patterson, E. M., Kiang, C. S., Delany, A. C., Wartburg, A. F., Leslie, A. C. D. and Huebert, B. J. 1980. Global measurements of aerosols in remote continental and marine regions: Concentrations, size distributions, and optical properties. J. Geophys. Res. 85, 7361-7376.
    • Penner, J. E., Chuang, C. C. and Grant, K. 1998. Climate forcing by carbonaceous and sulfate aerosols. Clim. Dyn. 14, 839-851.
    • Pirjola, L., Laaksonen, A., Aalto, P. and Kulmala, M. 1998. Sulfate aerosol formation in the Arctic boundary layer. J. Geophys. Res. 103, 8309-8321.
    • Rasch, P. J. and Kristja´nsson, J. E. 1998. A comparison of the CCM3 model climate using diagnosed and predicted condensate parameterizations. J. Clim. 11, 1587-1614.
    • Rasch, P. J., Barth, M. C., Kiehl, J. T., Schwartz, S. E. and Benkovitz, C. M. 2000. A description of the global sulfur cycle and its controlling processes in the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res. 105, 1367-1385.
    • Roeckner, E., Bengtsson, L. and Feichter, J. 1999. Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J. Clim. 12, 3004-3032.
    • Roelofs, G-J., Lelieveld, J. and Ganzeveld, L. 1998. Simulation of global sulfate distribution and the influence on cloud drop radii with a coupled photochemical sulfur cycle model. T ellus 50B, 224-242.
    • Rosenfeld, D. 2000. Suppression of rain and snow by urban and industrial air pollution. Science 287, 1793-1796.
    • Rummukainen, M., Ra¨isa¨nen, J., Bringfelt, B., Ullerstig, A., Omstedt, A., Wille´n, U., Hansson, U. and Jones, C. 2001. A regional climate model for northern Europe - model description and results from the downscaling of two GCM control simulations. Clim. Dyn. 5/6, 339-359.
    • Ra¨isa¨nen, P., Rummukainen, M. and Ra¨isa¨nen, J. 2000. Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model. Report No. 49. Department of Meteorology, University of Helsinki, Finland.
    • Savija¨rvi, H. 1990. Fast radiation parameterization schemes for mesoscale and short-range forecast models. J. Appl. Meteor. 29, 437-447.
    • Simmons, A. J. and Burridge, D. M. 1981. An energy and angular momentum conserving vertical finitedifference scheme and hybrid vertical coordinates. Mon. Wea. Rev. 109, 758-766.
    • Twomey, S. 1974. Pollution and the planetary albedo. Atmos. Environ. 8, 1251-1256.
    • World Climatic Program, 1986. A preliminary cloudless standard atmosphere for radiation computation (ed. H. E. Gerber). Ser. Rep. 112, Int. Counc. Sci. Unions and World Meteorological Organization, Geneva, Switzerland.
    • Wyser, K., Rontu, L. and Savija¨rvi, H. 1999. Introducing the effective radius into a fast radiation scheme of a mesoscale model. Contr. Atmos. Phys. 72, 205-218.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article

Collected from