Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Krämer, M.; Schiller, C.; Ziereis, H.; Ovarlez, J.; Bunz, H. (2011)
Publisher: Tellus B
Journal: Tellus B
Languages: English
Types: Article
Owing to the potential of cirrus clouds to vertically redistribute HNO3 in the upper troposphere, the uptake of HNO3 in ice particles is at the focus of recent research. Here, we investigate whether HNO3 residing in freezing aerosol particles could be a relevant source of HNO3 in ice clouds. To this end, model studies on the sensitivity of the uptake of HNO3 in aerosol particles to temperature, relative humidity with respect to ice (RHice), particle composition and amount of available HNO3 were performed. Combining the model results with the history of RHice during cirrus formation and comparison with field measurements indicates that at temperatures <200 K a considerable part of the HNO3 in ice may originate from freezing particles containing HNO3.DOI: 10.1111/j.1600-0889.2006.00177.x
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Beyer, K. D., Hanson, A. R. and Raddatz, N. 2004. Experimental determination of the H2SO4/HNO3/H2O phase diagram in regions of stratospheric importance. J. Phys. Chem. 108, 770-780.
    • Bunz, H., Koyro, M. and Mo¨hler, O. 2003. Impact of growth kinetics of electrolytic particles on their ice formation potential during AIDA expansion experiments. Geophysical Research Abstracts 5, 09904.
    • Chen, Y., DeMott, P. J., Kreidenweiss, S. M., Rogers, D. C. and Sherman, D. E. 2000. Ice formation by sulfate and sulfuric acid aerosol particles under upper-tropospheric conditions. J. Atmos. Sci. 57, 3752-3766.
    • Clegg, S. L., Brimblecombe, P. and Wexler, S. A. 1998. A thermodynamic model of the system H+-NH4+ − SO4=-NO3−-H2O at tropospheric temperatures. J. Phys. Chem. 102A, 2137-2154, (http://www.hpc1.uea.ac.uk/e770/aim.html).
    • Gao, R. S., Popp, P. J., Fahey, D. W., Marcy, T. P., Herman, R. L. and co-authors 2004. Evidence that nitric acid increases relative humidity in low-temperature cirrus clouds. Science 303, 5657: 516-520.
    • Hudson, P. K., Shilling, J. E., Tolbert, M. A. and Toon, O. B. 2002. Uptake of nitric acid on ice at tropospheric temperatures: Implications for cirrus clouds. J. Phys. Chem. A doi: 10.1021/jp020508j.
    • Hynes, R. G., Fernandez, M. A. and Cox, R. A. 2002. The uptake of HNO3 on water ice and the co-adsorption of HNO3 and HCl in the temperature range 210-235 K. J. Geophys. Res. 107, 4797, doi:10.1029/2001JD001557.
    • Irie H., Kondo, Y., Koike, M., Takegawa, N., Tabazadeh, A., Reeves, J. M., Sachse, G. W., Vay, S. A., Anderson, B. E. and Mahoney, M. J. 2004. Liquid ternary aerosols of HNO3/H2SO4/H2O in the Arctic tropopause region. Geophys. Res. Lett. 31, L01105, doi:10.1029/2003GL018678.
    • Jensen, E., Pfister, L., Bui, T., Weinheimer, A., Weinstock, E., Smith, J., Pittman, J., Baumgardner, D., Lawson, P. and McGill, M. J. 2005. Formation of a tropopause cirrus layer observed over Florida during CRYSTAL-FACE. J. Geophys. Res. 110, D03208, doi:10.1029/2004JD004671.
    • Ka¨rcher, B. and Solomon, S. 1999. On the composition and optical extinction of particles in the tropopause region. J. Geophys. Res. 104, 27 441-27 459.
    • Ka¨rcher, B. and Lohmann, U. 2002. A parametrization of cirrus cloud formation: Homogeneous freezing of supercooled aerosols. J. Geophys. Res. 107(D2), doi:10.1029,2001JD000470.
    • Ka¨rcher, B. and Lohmann, U. 2003. A parametrization of cirrus cloud formation: Heterogeneous freezing. J. Geophys. Res. 108, 4402, doi:10.1029,2002JD003220.
    • Ka¨rcher, B. 2003. Simulating gas-aerosol-cirrus interactions: Processoriented microphysical model and applications. Atmos. Chem. Phys. 3, 1645-1664.
    • Kondo, Y., Toon, O. B., Irie, H., Gamblin, B., Koike, M., Takegawa, N., Tolbert, M. A., Hudson, P. K., Viggiano, A. A., Avallone, L. M., Hallar, A. G., Anderson, B. E., Sachse, G. W., Vay, S. A., Hunton, D. E., Ballenthin, J. O. and Miller, T. M. 2003. Uptake of reactive nitrogen on cirrus cloud particles in the upper troposphere and lowermost stratosphere. Geophys. Res. Lett. 30, 4, 1154, doi:10.1029,2002GL016539.
    • Koop, T., Luo, B., Tsias, A. and Peter, Th. 2000. Water activity as the determinant for homogeneous ice nucleation in aqueous solutions. Nature 406, 611-614, doi:10.1038/35020537.
    • Kra¨mer, M., Beuermann, J., Schiller, C., Grimm, F., Arnold, F., Peter, Th, Meilinger, S., Meier, A., Hendricks, J., Petzold, A. and Schlager, H. 2003. Nitric acid partitioning in cirrus clouds: a synopsis based on field, laboratory and model studies. Atmos. Chem. Phys. Discuss. 3, 413-443.
    • Lawrence, M. and Crutzen, P. 1998. The impact of cloud particle gravitational settling on soluble trace gas distributions. Tellus 50B, 263-289.
    • Lin, J.-S. and Tabazadeh, A. 2001. A parametrization of an aerosol physical chemistry model for the NH3/H2SO4/HNO3/H2O system at cold temperatures. J. Geophys. Res. 106, 4815-4829.
    • Luo, B., Carslaw, K. S., Peter Th. and Clegg, S. L. 1995. Vapour pressures of H2SO4/HNO3/HCl/HBr/H2O solutions to low stratospheric temperatures. J. Geophys. Res. 22, 247-250.
    • Mangold, A., Wagner, R., Saathoff, H., Schurath, U., Giesemann, C., Ebert, V., Kra¨mer, M. and Mo¨hler, O. 2005. Experimental investigation of ice nucleation by different types of aerosols in the aerosol chamber AIDA: implications to microphysics of cirris clouds. Meteorol. Zeit. 14(4), 1-13.
    • Meier, A. and Hendricks, J. 2002. Model studies on the sensitivity of upper tropospheric chemistry to heterogeneous uptake of hno3 on cirrus ice particles. J. Geophys. Res. 107, 4696, doi:10.1029/2001JD000735.
    • Meilinger, S. K., Tsias, A., Dreiling, V., Kuhn, M., Feigl, Ch., Ziereis, H., Schlager, H., Curtius, J., Sierau, B., Arnold, F., Zo¨ger, M., Schiller, C. and Peter, T. 1999. HNO3 partitioning in cirrus clouds. Geophys. Res. Lett. 26, 2207-2210.
    • Mo¨hler, O., Stetzer, O., Scha¨fers, S., Linke, C., Schnaiter, M., Tiede, R., Saathoff, H., Kra¨mer, M., Mangold, A., Budz, P., Zink, P., Schreiner, J., Mauersberger, K., Haag, W., Ka¨rcher B. and Schurath, U. 2003. Experimental investigation of homogeneous freezing of sulphuric acid particles in the aerosol chamber AIDA. Atmos. Chem. Phys. 3, 211- 223.
    • Mo¨hler, O., Wagner, R., Bu¨ttner, S., Schnaiter, M., Saathoff, H., Stetzer, O., Kra¨mer, M., Mangold, A., Ebert, V. and Schurath, U. 2005. Effect of sulphuric acid coating on heterogeneous ice nucleation by soot aerosol particles. J. Geophys. Res. 110, D11210, doi:10.1029/2004JD005169.
    • Ovarlez, J., Gayet, J.-F., Gierens, K., Stro¨m, J., Ovarlez, H., Auriol, F., Busen, R. and Schuhmann, U. 2002. Water vapour measurements inside cirrus clouds in Northern and Southern hemispheres during INCA. Geophys. Res. Lett. 29, 1813, doi:10.1029/2001GL014440.
    • Peter, Th. 1997. Microphysics and heterogeneous chemistry of polar stratospheric clouds. Annu. Rev. Phys. Chem. 48, 785- 822.
    • Popp, P. J., Gao, R. S., Marcy, T. P., Fahey, D. W., Hudson, P. K. and co-authors 2004. Nitric acid uptake on subtropical cirrus cloud particles J. Geophys. Res. 109, D06302, doi:10.1029/2003JD004255.
    • Romakkaniemi, S., Kokkola, H. and Laaksonen, A. 2004. Growth of upper tropospheric aerosols due to uptake of HNO3. Atmos. Chem. Phys. 4, 549-556.
    • Spichtinger, P., Gierens, K., Smit, H. G. J., Ovarlez, J. and Gayet, J.-F. 2003. On the distribution of relative humidity in cirrus clouds. Atmos. Chem. Phys. 4(4), 639-647.
    • Stuart, A. L. and Jacobson, M. Z. 2003. A timescale investigation of volatile chemical retention during hydrometeor freezing: Nonrime freezing and dry growth riming without spreading. J. Geophys. Res. 108, doi:10.1029/2001JD001408.
    • Tabazadeh, A., Toon, O. P. and Jensen, E. J. 1999. A surface chemistry model for nonreactive trace gas adsorption on ice: Implications for nitric acid scavenging by cirrus. Geophys. Res. Letters 26, 2211- 2214.
    • Weinheimer, A. J., Campos, T. L., Walega, J. G., Grahek, F. E., Rodley, B. A., Twohy, C. H. and Gandrud, B. 1998. Uptake of NOy on wavecloud ice particles, Geophys. Res. Lett. 25, 1725-1728.
    • Ziereis, H., Minikin, A., Schlager, H., Gayet, J. F., Auriol, F., Stock, P., Baehr, J., Petzold, A., Schumann, U., Weinheimer, A., Ridle, B. and Stro¨m, J. 2004. Uptake of reactive nitrogen on cirrus cloud particles during INCA. Geophys. Res. Lett. 31, L05115. doi:10.1029/2003GL018794.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Collected from